Контакты

Основу пзу составляют микросхемы памяти. Подключение внешних микросхем озу и пзу в схемах на микроконтроллере

В микропроцессорных системах используется два вида запоминающих устройств (ЗУ): оперативные (ОЗУ) и постоянные (ПЗУ). В ОЗУ основной режим работы - это запись и считывание информации. Информация все время обновляется, хранится не долго и при выключении аппаратуры теряется. В ПЗУ основной режим работы - только считывание информации. Запись происходит при изготовлении микросхемы или при установке ее в аппаратуру.

Различают разновидности ПЗУ: программируемые (ППЗУ) и репрограммируемые (РПЗУ). Программируемые ПЗУ позволяют пользователю самостоятельно при помощи специальных приспособлений однократно записать информацию в микросхему. Такая запись программ производится обычно после их проверки и отладки. Изменить информацию после ее занесения в микросхему невозможно.

Репрограммируемые ПЗУ позволяют многократно стирать и заново заносить информацию. При этом может использоваться электрическое (ЭРПЗУ) или ультрафиолетовое стирание (РПЗУ - УФ).

В зависимости от способа организации памяти различают статические и динамические ЗУ. Статические ЗУ образованы на основе триггерных ячеек. Динамические ЗУ допускают изменение или передвижение данных при хранении, например, запоминание на конденсаторах, требующее периодического восстановления заряда. Динамические ЗУ не позволяют производить считывание в произвольный момент времени, но они обладают очень высокой плотностью записи информации и малым потреблением электроэнергии.

Для изготовления микросхем памяти используется ТТЛ и МОП технология и их разновидности.

На логических схемах ОЗУ обозначается RAM (динамическое ОЗУ-RAM) - Random Acces Memory - память с произвольной выборкой.

ПЗУ обозначается ROM (ППЗУ – PROM, РПЗУ – RPROM) - Read Only Memory - память только со считыванием.

Статические ОЗУ . Промышленностью выпускается большое количество различных микросхем оперативной памяти в различных сериях интегральных схем: К500, К1500, К537, К541, К565.

В качестве примера рассмотрим широко используемую в качестве статического ОЗУ микросхему К537РУЗ - рис.6.6. Она выполнена по КМОП технологии, но по уровню сигналов стыкуется с микросхемами ТТЛ типа. Объем памяти составляет 4К, т.е. 4096 триггерных ячеек. Время выборки не превышает 0,1 мкс, а время восстановления - 70 нс.

Внутри микросхема содержит матрицу 64 х 64 запоминающих элементов, дешифраторы адреса строк и столбцов, усилители записи и считывания, схему управления. Обозначения входов микросхемы:

А 12-разрядный адрес ячейки памяти;

DO output - выход данных;

DI input-вход данных;

CS выбор микросхемы;

WE установка режима «запись - считывание».


Символ на правом обрезе условного обозначения микросхемы обозначает, что выход имеет третье высокоимпендансное состояние Z . Режим работы микросхемы в зависимости от состояния управляющих сигналов иллюстрируется следующей таблицей:

CS WE Di DO Режим
Di Z Запись
* DO Чтение
* * Z Хранение

Символ ◊ обозначает произвольное состояние входа.

Объединяя несколько таких микросхем, можно построить многоразрядное ЗУ на 64К слов.

Динамические ОЗУ содержатся в микросхемах серии К565. Емкость их составляет до 64К. Регенерация происходит через каждые 2 мс. Микросхема имеет 4 режима работы: запись, считывание, хранение, регенерация. Регенерация производится путем обращения к каждой ячейке памяти по сигналу RAS. Естественно, в то время, когда происходит регенерация, запись и считывание информации производить нельзя.

Постоянные ЗУ служат для хранения программ и другой постоянной информации. Микросхемы этого типа сохраняют информацию при выключении напряжения питания. Строятся на базе матрицы запоминающих элементов ТТЛ или МОП структуры. Запись информации в матрицу происходит одноразово при помощи специально изготавливаемого фотошаблона путем металлизации промежутков между элементами. Такой фотошаблон значительно дороже самой микросхемы и изготавливается при заказе большой партии микросхем. Микросхемы ПЗУ входят в состав серий интегральных схем: К500, К541, К568. К596, К1610. На рнс.6.10 приведена схема ПЗУ К568РЕЗ. В микросхеме может быть записана информация объемом 2 14 байт. Считывание нужного байта производится заданием кода адреса и сигнала CS выбора микросхемы.

Программируемые ПЗУ позволяют, задать состояние ячеек памяти не на заводе-изготовителе микросхем, а самим разработчиком микропроцессорной системы. Программирование микросхем ППЗУ происходит путем пережигания плавких вставок в цепях ячеек памяти от внешнего источника с помощью специального устройства - программатора. Такие ПЗУ входят в состав следующих серий микросхем: К500, К556, К537, К541.

Электрические репрограммируемые ПЗУ позволяют осуществить многократное программирование при сохранении памяти при отключении питания. Память сохраняется за счет сохранения заряда в МОП структуре. Длительность хранения информации в нормальных условиях эксплуатации составляет годы.

Количество циклов перепрограммирования может достигать 10 4 . При этом можно стереть или сменить всю информацию или только выборочно. Микросхемы ЭР ПЗУ входят в состав ряда серий интегральных схем: К505, К558,К1601.

РПЗУ с ультрафиолетовым стиранием наиболее распространены. В них снятие заряда с МОП структуры ячейки памяти происходит при ультрафиолетовом облучении кристалла через окошко в корпусе микросхемы. Облучение производят специальной ультрафиолетовой лампой в течение 30 минут.

Примером РПЗУ-УФ может служить микросхема К573РФ. Число циклов перепрограммирования этой микросхемы не менее 25, а время сохранения информации без электропитания не менее 25 × 10 3 часов.

Микросхемы этого типа требуют защиты от случайного воздействия световых потоков во время эксплуатации.


ЛИТЕРАТУРА

1. Забродин Ю.С. Промышленная электроника. - М.: Высшая школа, 1982

2. Исаков Ю.Л. и Др. Основы промышленной электроники. Библиотека инженера. - К.: Техника, 1976.

3. Горбачев В.Н., Чаплыгин Е.Е. Промышленная электроника. - М.: Высшая школа, 1988.

4. Криютафович А. К., Трнфонюк В.В. Основы промышленной электроники. - М.: Высшая школа, 1985.

5. Руденко B.C., Сенько В.И., Трифонюк В.Р. Основы промышленной электроники. - К.: Высшая школа, 1985.

6. Шило В.Л. Популярные цифровые микросхемы. - М.: Радио и связь, 1988.

7. Краснопрошнна А.А., Скаржепа В.А., Кравец П.И. Электроника и микросхемотехника. - К.: Вища школа, 1989.

8. Применение интегральных микросхем. Под ред.А.Уильямса. Перевод с англ. - М.: Мир. 19?".

9. Щербаков В.И., Грездов Г.И. Электронные схемы на операционных усилителях. - К.: Техника, 1983.

10. Гранитов В.И. Физика полупроводников и полупроводниковые приборы. - М.: Советское радио, 1977.

11. Самофалов К.Г., Викторов О.В., Кузняк А.К. Микропроцессоры. Библиотека

инженера.-К.: Техника, 1986.

12.МирскиП Г.Я, Микропроцессоры в измерительных приборах. - М.: Радио и связь. 1984.

13. Вершинин О.Е. Применение микропроцессоров для автоматизации технологических процессов. - Л.: Энергоатомнздат, 1986.

Все виды памяти, которые мы рассматривали до сих пор, имеют одно общее свой­ство: в них можно и записывать информацию, и считывать ее. Такая память назы­вается ОЗУ (оперативное запоминающее устройство). Существует два типа ОЗУ: статическое и динамическое. Статическое ОЗУ конструируется с использовани­ем D-триггеров. Информация в ОЗУ сохраняется на протяжении всего времени, пока к нему подается питание: секунды, минуты, часы и даже дни. Статическое ОЗУ работает очень быстро. Обычно время доступа составляет несколько нано­секунд. По этой причине статическое ОЗУ часто используется в качестве кэш-па­мяти второго уровня.

В динамическом ОЗУ, напротив, триггеры не используются. Динамическое ОЗУ представляет собой массив ячеек, каждая из которых содержит транзистор и крошечный конденсатор. Конденсаторы могут быть заряженными и разряженны­ми, что позволяет хранить нули и единицы. Поскольку электрический заряд имеет тенденцию исчезать, каждый бит в динамическом ОЗУ должен обновляться (пе­резаряжаться) каждые несколько миллисекунд, чтобы предотвратить утечку дан­ных. Поскольку об обновлении должна заботиться внешняя логика, динамическое ОЗУ требует более сложного сопряжения, чем статическое, хотя этот недостаток компенсируется большим объемом.

Поскольку динамическому ОЗУ нужен только 1 транзистор и 1 конденсатор на бит (статическому ОЗУ требуется в лучшем случае б транзисторов на бит), дина­мическое ОЗУ имеет очень высокую плотность записи (много битов на одну микро­схему). По этой причине основная память почти всегда строится на основе динами­ческих ОЗУ. Однако динамические ОЗУ работают очень медленно (время доступа занимает десятки наносекунд). Таким образом, сочетание кэш-памяти на основе статического ОЗУ и основной памяти на основе динамического ОЗУ соединяет в себе преимущества обоих устройств.

Существует несколько типов динамических ОЗУ. Самый древний тип, кото­рый все еще используется, - FPM (Fast Page Mode - быстрый постраничный


Память 175

режим)-. Это ОЗУ представляет собой матрицу битов. Аппаратное обеспечение представляет адрес строки, а затем - адреса столбцов (мы описывали этот процесс, когда говорили об устройстве памяти, показанном на рис. 3.30, 6).

FPM постепенно замещается EDO 1 (Extended Data Output - память с расши­ренными возможностями вывода), которая позволяет обращаться к памяти еще до того, как закончилось предыдущее обращение. Такой конвейерный режим не ускоряет доступ к памяти, но зато увеличивает пропускную способность, выдавая больше слов в секунду.

И FPM, и EDO являются асинхронными. В отличие от них так называемое син­хронное динамическое ОЗУ управляется одним синхронизирующим сигналом. Данное устройство представляет собой гибрид статического и динамического ОЗУ. Синхронное динамическое ОЗУ часто используется при производстве кэш-памя­ти большого объема. Возможно, данная технология в будущем станет наиболее предпочтительной и в изготовлении основной памяти.



ОЗУ - не единственный тип микросхем памяти. Во многих случаях данные должны сохраняться, даже если питание отключено (например, если речь идет об игрушках, различных приборах и машинах). Более того, после установки ни про­граммы, ни данные не должны изменяться. Эти требования привели к появлению ПЗУ (постоянных запоминающих устройств), которые не позволяют изменять и стирать хранящуюся в них информацию (ни умышленно, ни случайно). Данные записываются в ПЗУ в процессе производства. Для этого изготавливается трафарет с определенным набором битов, который накладывается на фоточувствительный материал, а затем открытые (или закрытые) части поверхности вытравливаются. Единственный способ изменить программу в ПЗУ - поменять целую микросхему.

ПЗУ стоят гораздо дешевле ОЗУ, если заказывать их большими партиями, что­бы оплатить расходы на изготовление трафарета. Однако они не допускают измене­ний после выпуска с производства, а между подачей заказа на ПЗУ и его выполне­нием может пройти несколько недель. Чтобы компаниям было проще разрабатывать новые устройства, основанные на ПЗУ, были выпущены программируемые ПЗУ. В отличие от обычных ПЗУ, их можно программировать в условиях эксплуата­ции, что позволяет сократить время выполнения заказа. Многие программируе­мые ПЗУ содержат массив крошечных плавких перемычек. Можно пережечь определенную перемычку, если выбрать нужную строку и нужный столбец, а затем приложить высокое напряжение к определенному выводу микросхемы.

Следующая разработка этой линии - стираемое программируемое ПЗУ, ко­торое можно не только программировать в условиях эксплуатации, но и стирать с него информацию. Если кварцевое окно в данном ПЗУ подвергать воздействию сильного ультрафиолетового света в течение 15 минут, все биты установятся на 1. Если нужно сделать много изменений во время одного этапа проектирования, сти­раемые ПЗУ гораздо экономичнее, чем обычные программируемые ПЗУ, поскольку их можно использовать многократно. Стираемые программируемые ПЗУ обычно устроены так же, как статические ОЗУ. Например, микросхема 27С040 имеет структуру, которая показана на рис. 3.30, а, а такая структура типична для стати­ческого ОЗУ.

Динамическая намять типа EDO вытеснила обычную динамическую память, работающую н режиме FPM, в середине 90-х годов. - Примеч. научи, ред.


Следующий этап - электронно-перепрограммируемое ПЗУ, с которого мож­но стирать информацию, прилагая к нему импульсы, и которое не нужно для этого помещать в специальную камеру, чтобы подвергнуть воздействию ультрафиоле­товых лучей. Кроме того, чтобы перепрограммировать данное устройство, его не нужно вставлять в специальный аппарат для программирования, в отличие от сти­раемого программируемого ПЗУ. Но с другой стороны, самые большие электрон­но-перепрограммируемые ПЗУ в 64 раза меньше обычных стираемых ПЗУ, и ра­ботают они в два раза медленнее. Электронно-перепрограммируемые ПЗУ не могут конкурировать с динамическими и статическими ОЗУ, поскольку они работают в 10 раз медленнее, их емкость в 100 раз меньше и они стоят гораздо дороже. Они используются только в тех ситуациях, когда необходимо сохранение информации при выключении питания.

Более современный тип электронно-перепрограммируемого ПЗУ - флэш-па­мять. В отличие от стираемого ПЗУ, которое стирается под воздействием ультра­фиолетовых лучей, и от электронно-программируемого ПЗУ, которое стирается по байтам, флэш-память стирается и записывается блоками. Как и любое элект­ронно-перепрограммируемое ПЗУ, флэш-память можно стирать, не вынимая ее из микросхемы. Многие изготовители производят небольшие печатные платы, со­держащие десятки мегабайтов флэш-памяти. Они используются для хранения изоб­ражений в цифровых камерах и для других целей. Возможно, когда-нибудь флэш-память вытеснит диски, что будет грандиозным шагом вперед, учитывая время доступа в 100 не. Основной технической проблемой в данный момент является то, что флэш-память изнашивается после 10 000 стираний, а диски могут служить го­дами независимо от того, сколько раз они перезаписывались. Краткое описание различных типов памяти дано в табл. 3.2.

Таблица 3.2. Характеристики различных видов памяти

Тип запо- Категория Стирание Изменение Энерго- Применение
минающего записи информации зависи-
устройства по байтам мость
Статическое Чтение/ Электрическое Да Да Кэш-память
ОЗУ (SRAM) запись второго уровня
Динамическое Чтение/ Электрическое Да Да Основная память
ОЗУ (DRAM) запись
ПЗУ(ЯОМ) Только Невозможно Нет Нет Устройства
чтение большого размера
Програм- Только Невозможно Нет Нет Устройства
мируемое чтение небольшого
ПЗУ (PROM) размера
Стираемое Преиму- Ультра- Нет Нет Моделирование
програм- щественно фиолетовый устройств
мируемое чтение свет
ПЗУ(ЕРРЮМ)
Электронно- Преиму- Электрическое Да Нет Моделирование
перепрограм- щественно устройств
мируемое ПЗУ чтение
(EEPROM)
флэш-память Чтение/ Электрическое Нет Нет Цифровые камеры
(Flash) запись

Микросхемы процессоров и шины 177

Микросхемы процессоров и шины

Поскольку нам уже известна некоторая информация о МИС, СИС и микросхе­мах памяти, то мы можем сложить все составные части вместе и изучать целые системы. В этом разделе сначала мы рассмотрим процессоры на цифровом ло­гическом уровне, включая цоколевку (то есть значение сигналов на различных выводах). Поскольку центральные процессоры тесно связаны с шинами, которые они используют, мы также кратко изложим основные принципы разработки шин. Б следующих разделах мы подробно опишем примеры центральных процессоров и шин для них.

Микросхемы процессоров

Все современные процессоры помещаются на одной микросхеме. Это делает впол­не определенным их взаимодействие с остальными частями системы. Каждая мик­росхема процессора содержит набор выводов, через которые происходит обмен информацией с внешним миром. Одни выводы передают сигналы от централь­ного процессора, другие принимают сигналы от других компонентов, третьи дела­ют и то и другое. Изучив функции всех выводов, мы сможем узнать, как процессор взаимодействует с памятью и устройствами ввода-вывода на цифровом логичес­ком уровне.

Выводы микросхемы центрального процессора можно подразделить на три типа: адресные, информационные и управляющие. Эти выводы связаны с соответству­ющими выводами на микросхемах памяти и микросхемах устройств ввода-вывода через набор параллельных проводов (так называемую шину). Чтобы вызвать ко­манду, центральный процессор сначала посылает в память адрес этой команды по адресным выводам. Затем он запускает одну или несколько линий управления, чтобы сообщить памяти, что ему нужно, например, прочитать слово. Память выда­ет ответ, помещая требуемое слово на информационные выводы процессора и по­сылая сигнал о том, что это сделано. Когда центральный процессор получает дан­ный сигнал, он принимает слово и выполняет вызванную команду. ■ Команда может требовать чтения или записи слов, содержащих данные. В этом случае весь процесс повторяется для каждого дополнительного слова. Как проис­ходит процесс чтения и записи, мы подробно рассмотрим ниже. Важно понимать, что центральный процессор обменивается информацией с памятью и устройства­ми ввода-вывода, подавая сигналы на выводы и принимая сигналы на входы. Дру­гого способа обмена информацией не существует.

Число адресных выводов и число информационных выводов - два ключевых параметра, которые определяют производительность процессора. Микросхема, содержащая m адресных выводов, может обращаться к 2 т ячейкам памяти. Обыч­но m равно 16, 20, 32 или 64. Микросхема, содержащая п информационных выво­дов, может считывать или записывать n-битное слово за одну операцию. Обычно п равно 8, 16, 32, 36 или 64. Центральному процессору с 8 информационными выво­дами понадобится 4 операции, чтобы считать 32-битное слово, тогда как процес­сор, имеющий 32 информационных вывода, может сделать ту же работу в одну

Глава 3. Цифровой логический уровень


операцию. Следовательно, микросхема с 32 информационными выводами работа­ет гораздо быстрее, но и стоит гораздо дороже.

Кроме адресных и информационных выводов каждый процессор содержит вы­воды управления. Выводы управления регулируют и синхронизируют поток дан­ных к процессору и от него, а также выполняют другие разнообразные функции. Все процессоры содержат выводы для питания (обычно +3,3 В или +5 В), «земли» и синхронизирующего сигнала (меандра). Остальные выводы разнятся от процес­сора к процессору. Тем не менее выводы управления можно разделить на несколь­ко основных категорий:

1. Управление шиной.

2. Прерывание.

3. Арбитраж шины.

4. Состояние.

5. Разное.

Ниже мы кратко опишем каждую из этих категорий. Когда мы будем рассмат­ривать микросхемы Pentium II, UltraSPARC II и picojava II, мы дадим более по­дробную информацию. Схема типичного центрального процессора, в котором ис­пользуются эти типы сигналов, изображена на рис. 3.31.


61 ПОЛУПРОВОДНИКОВЫЕ

ЗАПОМИНАЮЩИЕ УСТРОЙСТВА

5.2. Постоянные запоминающие устройства

5.2.1. Принципы построения схем ПЗУ

Постоянные запоминающие устройства представляют собой память с произвольным обращением, допускающую лишь считывание данных. Типовая структура ПЗУ показана на рис.5.12а. Схема ПЗУ имеет много общего со схемой ОЗУ (рис.5.5).

Рис. 5.12. ПЗУ с организацией 16 слов х 1 разряд:

а – схема, б – УГО

В узлах матрицы, образованной системой горизонтальных и вертикальных шин, включены элементы памяти - транзисторы. В качестве элементов памяти в накопителях ПЗУ могут использоваться как биполярные, так и МОП-транзисторы. Базы (затворы) транзисторов подключены к горизонтальным (адресным) шинам, эмиттеры (истоки) через перемычку соединены с вертикальными (разрядными) шинами.

Наличие перемычки означает хранение в элементе памяти 1. Если перемычка (или транзистор) отсутствуют, это означает, что в элементе хранится 0.

К адресным шинам подключены выходы дешифратора, на входы которого поступает часть разрядов адресного кода. Разрядные шины соединены с входами мультиплексора, на адресные входы которого подается вторая часть адресного кода ПЗУ. Мультиплексор имеет выход с

тремя состояниями (если G 1 = G 2 = 0 , то на выход Q проходит один из информационных сигналов, если один из сигналов не равен 0, то выход Q в третьем состоянии).

При поступлении адресного кода на одной из адресных шин Y i

установится высокий уровень напряжения, открывающий транзисторы - элементы накопителя одной строки. Транзисторы через перемычки передают высокий уровень на соответствующие разрядные шины. Если на пересечении некоторых вертикальных шин с выбранной строкой перемычки отсутствуют, то на этих шинах останется низкий уровень. Сигналы разрядных шин поступают на входы мультиплексора, который передает один из сигналов на выход Q . Какая из разрядных шин подключается к выходу, зависит от части адресного кода ПЗУ, поступающего на входы адреса мультиплексора. Таким образом, выходной сигнал ПЗУ определяется данными, хранимыми на одном из элементов накопителя.

Микросхемы ПЗУ имеют (как и ИС ОЗУ) вход выбора CS . Некоторые ИС ПЗУ имеют также вход для подачи сигнала разрешения по

входу CEO (при сигнале CEO = 1 выход переводится в третье состояние,

при CEO = 0 режим работы ПЗУ определяется сигналами на остальных входах). Условное обозначение схемы ПЗУ показано на рис. 5.12б (ROM - Read Only Memory).

Строение элемента памяти ПЗУ намного проще, чем ОЗУ. Поэтому на той же площади накопителя можно построить ЗУ с большей информационной емкостью. Записанная в ПЗУ информация сохраняется при отключении питания, что делает удобным хранение в ПЗУ стандартных программ вычислительных машин и т.п. ПЗУ можно использовать в качестве универсальной комбинационной схемы. Входные переменные схемы поступают на адресные входы ПЗУ. Значение выходной переменной, отвечающее каждой комбинации входных, должно быть записано в элементе ПЗУ с соответствующим адресом. Если таблица состояний содержит m входных переменных, то по каждому адресу записывается m -разрядное слово данных. Промышленностью

63 ПОЛУПРОВОДНИКОВЫЕ

ЗАПОМИНАЮЩИЕ УСТРОЙСТВА

выпускаются ИС ПЗУ для использования в качестве преобразования кодов, контроллеров, знакогенераторов, формирователей сигналов и т.п.

Запись данных в ПЗУ может осуществляться в процессе изготовления микросхемы. При этом с помощью специальной металлической маски в схеме накопителя формируется требуемый вариант соединения элементов памяти с разрядными шинами. Такие микросхемы памяти называют масочно-программируемыми, или масочными ПЗУ.

Примеры ИС:

К155ПР6 и К155ПР7 - преобразователи двоично-десятичного кода в двоичный и двоичного в двоично-десятичный, построены с использованием масочного ПЗУ емкостью 256 бит на основе ТТЛэлементов.

КР1610РЕ1 - масочное ПЗУ на n-МОП структурах емкостью 16384 бит (2048 слов х 8 разрядов). Время выбора - 340 нс, время выборки сигнала разрешения по выходу - 80 нс.

5.2.2. Программируемые ПЗУ

Программируемыми называют постоянные запоминающие устройства, которые допускают запись информации после изготовления микросхемы. Принцип записи данных в такие программируемые ПЗУ (ППЗУ) можно пояснить следующим образом. В исходном состоянии во всех элементах накопителя ПЗУ (рис. 5.12) установлены перемычки (например, нихромовые), что соответствует записи 1 по всем адресам. Устанавливая адрес элемента, в котором надо записать 0, и подавая в определенной последовательности повышенные импульсные напряжения на вывод питания и выход данных (часто имеется и специальный вывод для подачи напряжения программирования), можно расплавить перемычку этого элемента. Как было показано выше, отсутствие перемычки в некотором элементе и означает, что в нем записан 0. Для записи данных в ПЗУ используют специальные устройства, называемые программаторами.

Примеры ИС:

КР556РТ5 - программируемое ПЗУ на основе ТТЛ-элементов с диодами Шоттки емкостью 4096 бит (512 слов х 8 разрядов). Время выборки адреса - 80 нс.

ППЗУ с плавкими перемычками, пережигаемые мощными импульсами тока, могут программироваться только один раз. Устройства, допускающие многократную запись данных, называются репрограммируемыми ПЗУ (РПЗУ). Элементом памяти РПЗУ является лавинно-инжекционный МОП-транзистор с двумя затворами, один из

которых подключается к горизонтальной адресной шине, а второй изолирован и является плавающим. Пороговое напряжение МОПтранзистора в исходном состоянии близко к нулю. При подаче высокого уровня на затвор, соединенный с адресной шиной, транзистор открывается и на соответствующей вертикальной шине появляется сигнал, соответствующий записанной в элементе 1. При программировании прикладывается большое напряжение между стоком и истоком. Это вызывает инжекцию электрического заряда в область плавающего затвора, в результате чего пороговое напряжение МОП-транзистора увеличивается. Когда при выборке элемента на затвор через адресную шину поступает высокий уровень напряжения, транзистор остается закрытым и на соответствующей разрядной шине напряжение не увеличивается. Это означает, что в элементе записан «0». Заряд в плавающем затворе сохраняется очень долго (десятки тысяч часов). Записанная в РПЗУ информация может быть стерта, если кристалл накопителя осветить ультрафиолетовым излучением. При этом заряд плавающего затвора исчезает и во всех элементах памяти восстанавливается 1. После стирания РПЗУ может быть снова запрограммировано.

Кроме РПЗУ со стиранием ультрафиолетовым облучением, имеются устройства постоянной памяти с электрическим стиранием. В таком РПЗУ элемент памяти представляет собой МОП-структуру с изоляцией нитридом кремния.

Примеры ИС:

К573РР2 - репрограммируемое ПЗУ с электрическим стиранием. Информационная емкость 16384 бит (2048 слов х 8 разрядов). Время выборки адреса - 350 нс. Время хранения информации - не менее 15 тыс. часов.

К573РФ2 - репрограммируемое ПЗУ с ультрафиолетовым стиранием. Информационная емкость - 16384 бит (2048 слов х 8 разрядов). Время выборки адреса - 450 нс. Время хранения информации - не менее 25 тыс. часов. Микросхема имеет специальное окно для ультрафиолетового облучения (в режиме хранения оно должно быть закрыто). Условное обозначение РПЗУ приведено на рис. 5.13 (EPROM – Erasable Programmable ROM), UPR – напряжение программирования. Временные диаграммы, иллюстрирующие работу ЗУ в режиме считывания, показаны на рис. 5.14.

ЦИФРОВЫЕ УСТРОЙСТВА И МИКРОПРОЦЕССОРЫ ЧАСТЬ 2

65 ПОЛУПРОВОДНИКОВЫЕ

ЗАПОМИНАЮЩИЕ УСТРОЙСТВА

Рис. 5.13. Репрограммируемое ПЗУ К573РФ2 емкостью 16384 бит (2048 слов х 8 разрядов)

Рис. 5.14. Временные диаграммы работы РПЗУ К573РФ2 в режиме считывания

Память - это всегда очень сложная структура, включающая в себя множество элементов. Правда, внутренняя структура памяти - регулярная, большинство элементов одинаковые, связи между элементами сравнительно простые, поэтому функции, выполняемые микросхемами памяти, не слишком сложные.

Память , как и следует из ее названия, предназначена для запоминания, хранения каких-то массивов информации, проще говоря, наборов, таблиц, групп цифровых кодов. Каждый код хранится в отдельном элементе памяти, называемом ячейкой памяти. Основная функция любой памяти как раз и состоит в выдаче этих кодов на выходы микросхемы по внешнему запросу. А основной параметр памяти - это ее объем, то есть количество кодов, которые могут в ней храниться, и разрядность этих кодов.

Для обозначения количества ячеек памяти используются следующие специальные единицы измерения:

  • 1К - это 1024, то есть 2 10 (читается "кило-"" или "ка-"), примерно равно одной тысяче;
  • 1М - это 1048576, то есть 2 20 (читается "мега-"), примерно равно одному миллиону;
  • 1Г - это 1073741824, то есть 2 30 (читается "гига-"), примерно равно одному миллиарду.

Принцип организации памяти записывается следующим образом: сначала пишется количество ячеек, а затем через знак умножения (косой крест) - разрядность кода, хранящегося в одной ячейке. Например, организация памяти 64Кх8 означает, что память имеет 64К (то есть 65536) ячеек и каждая ячейка - восьмиразрядная. А организация памяти 4М х 1 означает, что память имеет 4М (то есть 4194304) ячеек, причем каждая ячейка имеет всего один разряд. Общий объем памяти измеряется в байтах (килобайтах - Кбайт, мегабайтах - Мбайт, гигабайтах - Гбайт) или в битах (килобитах - Кбит, мегабитах - Мбит, гигабитах - Гбит).

В зависимости от способа занесения (записи) информации и от способа ее хранения, микросхемы памяти разделяются на следующие основные типы:

  • Постоянная память (ПЗУ - постоянное запоминающее устройство , ROM - Read Only Memory - память только для чтения), в которую информация заносится один раз на этапе изготовления микросхемы. Такая память называется еще масочным ПЗУ . Информация в памяти не пропадает при выключении ее питания, поэтому ее еще называют энергонезависимой памятью.
  • Программируемая постоянная память (ППЗУ - программируемое ПЗУ , PROM - Programmable ROM), в которую информация может заноситься пользователем с помощью специальных методов (ограниченное число раз). Информация в ППЗУ тоже не пропадает при выключении ее питания, то есть она также энергонезависимая.
  • Оперативная память (ОЗУ - оперативное запоминающее устройство , RAM - Random Access Memory - память с произвольным доступом), запись информации в которую наиболее проста и может производиться пользователем сколько угодно раз на протяжении всего срока службы микросхемы. Информация в памяти пропадает при выключении ее питания.

Существует множество промежуточных типов памяти, а также множество подтипов , но указанные - самые главные, принципиально отличающиеся друг от друга. Хотя, разница между ПЗУ и ППЗУ с точки зрения разработчика цифровых устройств, как правило, не так уж велика. Только в отдельных случаях, например, при использовании так называемой флэш-памяти (flash- memory ), представляющей собой ППЗУ с многократным электрическим стиранием и перезаписью информации, эта разница действительно чрезвычайно важна. Можно считать, что флэш-память занимает промежуточное положение между ОЗУ и ПЗУ .

В общем случае любая микросхема памяти имеет следующие информационные выводы (рис. 11.1):


Рис. 11.1.

  • Адресные выводы (входные), образующие шину адреса памяти. Код на адресных линиях представляет собой двоичный номер ячейки памяти, к которой происходит обращение в данный момент. Количество адресных разрядов определяет количество ячеек памяти: при количестве адресных разрядов n количество ячеек памяти равно 2 n .
  • Выводы данных (выходные), образующие шину данных памяти. Код на линиях данных представляет собой содержимое той ячейки памяти, к которой производится обращение в данный момент. Количество разрядов данных определяет количество разрядов всех ячеек памяти (обычно оно бывает равным 1, 4, 8, 16). Как правило, выходы данных имеют тип выходного каскада ОК или 3С.
  • В случае оперативной памяти, помимо выходной шины данных , может быть еще и отдельная входная шина данных , на которую подается код, записываемый в выбранную ячейку памяти. Другой возможный вариант - совмещение входной и выходной шин данных, то есть двунаправленная шина, направление передачи информации по которой определяется управляющими сигналами. Двунаправленная шина применяется обычно при количестве разрядов шины данных 4 или более.
  • Управляющие выводы (входные), которые определяют режим работы микросхемы. В большинстве случаев у памяти имеется вход выбора микросхемы CS (их может быть несколько, объединенных по функции И). У оперативной памяти также обязательно есть вход записи WR, активный уровень сигнала на котором переводит микросхему в режим записи.

Мы в данной лекции не будем, конечно, изучать все возможные разновидности микросхем памяти, для этого не хватит целой книги. К тому же эта информация содержится в многочисленных справочниках. Микросхемы памяти выпускаются десятками фирм во всем мире, поэтому даже перечислить все их не слишком просто, не говоря уже о том, чтобы подробно рассматривать их особенности и параметры. Мы всего лишь рассмотрим различные схемы включения типичных микросхем памяти для решения наиболее распространенных задач, а также методы проектирования некоторых узлов и устройств на основе микросхем памяти. Именно это имеет непосредственное отношение к цифровой схемотехнике. И именно способы включения микросхем мало зависят от характерных особенностей той или иной микросхемы той или иной фирмы.

В данном разделе мы не будем говорить о флэш-памяти, так как это отдельная большая тема. Мы ограничимся только простейшими микросхемами ПЗУ и ППЗУ, информация в которые заносится раз и навсегда (на этапе изготовления или же самим пользователем). Мы также не будем рассматривать здесь особенности оборудования для программирования ППЗУ (так называемых программаторов ), принципы их построения и использования, - это отдельная большая тема. Мы будем считать, что нужная нам информация может быть записана в ПЗУ или ППЗУ, а когда, как, каким способом она будет записана, нам не слишком важно. Все эти допущения позволят нам сосредоточиться именно на схемотехнике узлов и устройств на основе ПЗУ и ППЗУ (для простоты будем называть их в дальнейшем просто ПЗУ ).

Упомянем здесь только, что ППЗУ делятся на репрограммируемые или перепрограммируемые

ПЗУ – память, информация в которой, будучи однажды записанной, изменению не подлежит. Например, программа загрузки в ОЗУ микропроцессорной системы информации из внешней памяти. Все типы ПЗУ используют один и тот же принцип построения схемы. Информация в ПЗУ представляется в виде наличия или отсутствия соединения между шинами адреса и данных.

Условное графическое обозначение ПЗУ представлено на рис.26.10.

Рис.26.10. Условное графическое обозначение ПЗУ

Рис. 26.11. Схема ПЗУ

На рис. 26.11 приведена схема простейшего ПЗУ. Для реализации ПЗУ достаточно использовать дешифратор, диоды, набор резисторов и шинные формирователи. Рассматриваемое ПЗУ содержит разрядных слова, т.е. его общий объем составляет 32 бит. Количество столбцов определяет разрядность слова, а количество строк – количество 8 разрядных слов. Диоды устанавливаются в тех местах, где должны храниться биты, имеющие значение логического «0» (дешифратор подает 0 на выбранную строку). В настоящее время вместо диодов ставят МОП-транзисторы.

В табл. 26.1 приведено состояние ПЗУ, схема которого приведена на рис. 26.11.

Таблица 26.1

Состояние простого ПЗУ

Слово Двоичное представление
А0 А1 D1 D2 D3 D4 D5 D6 D7 D8

Как правило, ПЗУ имеют многоразрядную организацию со структурой 2DM . Технологии изготовления самые разнообразные – КМОП, n-МОП, ТТЛ(Ш) и диодные матрицы.

Все ПЗУ можно разделить на следующие группы: программируемые при изготовлении (масочные), с однократным программированием и перепрограммируемые.

В запоминающих устройствах, программируемых при изготовлении (ПЗУ или ROM), информация записывается непосредственно в процессе их изготовления с помощью фотошаблона, называемого маской, на завершающем этапе технологического процесса. Такие ПЗУ называемые масочными, построены на диодах, биполярных или МОП транзисторах.

Область использования масочных ПЗУ – хранение стандартной информации, например знакогенераторы (коды букв латинского и русского алфавита), таблицы типовых функций (синусы, квадратичные функции), стандартное программное обеспечение.

Программируемые постоянные запоминающие устройства (ППЗУ, или PROM ) – ПЗУ с возможностью однократного электрического программирования. Этот вид памяти позволяет пользователю однократно запрограммировать микросхему памяти с помощью программаторов.

Микросхемы ППЗУ построены на запоминающих ячейках с плавкими перемычками. Процесс программирование заключается в избирательном пережигании плавких перемычек с помощью импульсов тока достаточной амплитуды и длительности. Плавкие перемычки включаются в электроды диодов или транзисторов.

На рис. 26.12 приведена схема ППЗУ с плавкими перемычками. Оно изготавливается со всеми диодами и перемычками, т.е. в матрице все «0», а при программировании пережигаются те перемычки, в ячейках которых должны быть логические «1».

Рис. 26.12. Фрагмент схемы ППЗУ

Репрограммируемые постоянные запоминающие устройства (РПЗУ и РПЗУ УФ) – ПЗУ с возможностью многократного электрического программирования. В ИС РПЗУ УФ (EPROM ) старая информация стирается с помощью ультрафиолетовых лучей, для чего в корпусе микросхемы имеется прозрачное окошко; в РПЗУ (EEPROM ) – с помощью электрических сигналов.

Запоминающие ячейки РПЗУ строятся на n -МОП или КМОП транзисторах. Для построения ЗЭ используются различные физические явления хранения заряда на границе между двумя диэлектрическими средами или проводящей и диэлектрической средой.

В первом варианте диэлектрик под затвором МОП транзистора делают из двух слоев: нитрида кремния и двуокиси кремния. Этот транзистор называется МНОП: металл – нитрид кремния – окисел – полупроводник. На границе диэлектрических слоев возникают центры захвата зарядов. Благодаря туннельному эффекту носители заряда могут проходить сквозь тонкую пленку окисла и скапливаться на границе раздела слоев. Этот заряд, являющийся носителем информации, хранимой МНОП-транзистором, приводит к изменению порогового напряжения транзистора. При этом пороговое напряжение возрастает настолько, что рабочее напряжение на затворе транзистора не в состоянии его открыть. Транзистор, в котором заряд отсутствует, легко открывается. Одно из состояний определено как логическая единица, второе – ноль.

Во втором варианте затвор МОП транзистора делают плавающим, т.е. не связанным с другими элементами схемы. Такой затвор заряжается током лавинной инжекции при подаче на сток транзистора высокого напряжения. В результате заряд на плавающем затворе влияет на ток стока, что используется при считывании информации, как и в предыдущем варианте с МНОП транзистором. Такие транзисторы получили название ЛИЗМОП (МОП транзистор с лавинной инжекцией заряда). Так как затвор транзистора окружен изолятором, ток утечки очень мал и информация может храниться достаточно долго (десятки лет).

В РПЗУ с электрическим стиранием над плавающим затвором транзистора размещают второй – управляющий затвор. Подача напряжения на него вызывает рассасывание заряда на плавающем затворе за счет туннельного эффекта. РПЗУ имеют весомые преимущества перед РПЗУ УФ, так как не требуют для перепрограммирования специальных источников ультрафиолетового света. ЗУ с электрическим стиранием практически вытеснили ЗУ с ультрафиолетовым стиранием.

Фрагмент схемы РПЗУ с использованием двухзатворных транзисторов типа ЛИЗМОП показан на рис. 26.13. Запись логического нуля осуществляется в режиме программирования с помощью заряда плавающего затвора. Стирание информации, т.е. разряд плавающего затвора, означает запись логической единицы. В этом случае при подаче сигнала по линии выборки опрашиваемые транзисторы открываются и передают напряжение U ПИТ на линии считывания.

Современные РПЗУ имеют информационную емкость до 4 Мбит при тактовой частоте до 80 МГц.

26.5. Flash -память

Основные принципы работы и тип запоминающих элементов Flash -памяти аналогичны ППЗУ с электрической записью и стиранием информации, построенной на транзисторах с плавающим затвором. Как правило, благодаря своим особенностям, Flash -память выделяют в отдельный класс. В ней производится стирание или всей записанной информации одновременно, или больших блоков информации, а не стирание отдельных слов. Это позволяет исключить схемы управления записью и стиранием отдельных байтов, что дает возможность значительно упростить схему ЗУ и достичь высокого уровня интеграции и быстродействия при снижении стоимости.

Рис.26.13. Фрагмент схемы РПЗУ

Современные тенденции развития электронных приборов требуют постоянного увеличения объема используемой памяти. На сегодня инженеру доступны микросхемы как энергозависимой памяти типа DRAM , которую характеризуют предельно низкая цена за бит и большие уровни интеграции, так и энергонезависимой Flash -памяти, себестоимость которой постоянно снижается и стремится к уровню DRAM .

Потребность в энергонезависимой Flash -памяти растет пропорционально степени продвижения компьютерных систем в сферу мобильных приложений. Надежность, малое энергопотребление, небольшие размеры и незначительный вес являются очевидными преимуществами носителей на основе Flash -памяти в сравнении с дисковыми накопителями. С учетом постоянного снижения стоимости хранения единицы информации в Flash -памяти, носители на её основе предоставляют все больше преимуществ и функциональных возможностей мобильным платформам и портативному оборудованию, использующему такую память. Среди многообразия типов памяти, Flash -память на основе ячеек NAND является наиболее подходящей основой для построения энергонезависимых устройств хранения больших объемов информации.

В настоящее время можно выделить две основных структуры построения флэш-памяти: память на основе ячеек NOR (ИЛИ-НЕ) и NAND (И-НЕ). Структура NOR (рис. 26.14, а) состоит из параллельно включенных элементарных ячеек хранения информации. Такая организация ячеек обеспечивает возможность произвольного доступа к данным и побайтной записи информации. В основе структуры NAND (рис. 26.14, б) лежит принцип последовательного соединения элементарных ячеек, образующих группы (в одной группе 16 ячеек), которые объединяются в страницы, а страницы – в блоки. При таком построении массива памяти обращение к отдельным ячейкам невозможно. Программирование выполняется одновременно только в пределах одной страницы, а при стирании обращение производится к блокам или к группам блоков.

Рис.26.14. Структуры на основе NOR (a) и NAND (б)

В результате различия в организации структуры между памятью NOR и NAND находят свое отражение в их характеристиках. При работе со сравнительно большими массивами данных процессы записи/стирания в памяти NAND выполняются значительно быстрее памяти NOR . Поскольку 16 прилегающих друг другу ячеек памяти NAND соединены последовательно друг с другом без каких-либо контактных промежутков, достигается высокая площадь размещения ячеек на кристалле, что позволяет получить большую емкость при одинаковых технологических нормах. В основе программирования флэш-памяти NAND лежит процесс туннелирования электронов. А поскольку он используется как для программирования, так и для стирания, достигается низкое энергопотребление микросхемы памяти. Последовательная структура организации ячеек позволяет получить высокую степень масштабируемости, что делает NAND-Flash лидером в гонке наращивания объемов памяти. Ввиду того, что туннелирование электронов осуществляется через всю площадь канала ячейки, интенсивность захвата заряда на единицу площади у NAND-Flash ниже, чем в других технологиях Flash -памяти, в результате чего она имеет более высокое количество циклов программирования/стирания. Программирование и чтение выполняются посекторно или постранично, блоками по 512 байт, для эмуляции общераспространенного размера сектора дисковых накопителей.

Более детально особенности микросхем Flash -памяти можно рассмотреть на примере кристаллов серии HY 27xx(08/16)1G 1M фирмы Hynix . На рис. 26.15 показана внутренняя структура и назначение выводов этих приборов.

Микросхема имеет следующие выводы:

I/O 8-15 – вход/выход данных для х16 устройств

I/O 0-7 – вход/выход данных, адресный вход или вход команд для х8 и х16 устройств;

ALE – включение адресной защелки;

CLE – включение защелки команд;

– выбор кристалла;

– разрешение чтения;

– чтение/занят (выход с открытым стоком);

– разрешение записи;

– защита от записи

V CC – напряжение питания;

V SS – общий вывод.

Рис.26.15. Схема внешних выводов (а), назначение выводов (б) и структурная схема (в) Flash -памяти

Линии адреса мультиплексированы с линиями ввода/вывода данных на 8-ми или 16-ти разрядной шине ввода/вывода. Такой интерфейс уменьшает количество используемых выводов и делает возможным переход к микросхемам большей емкости без изменения печатной платы. Каждый блок может быть запрограммирован и стерт 100000 раз. Микросхемы имеют выход «чтение/занят» с открытым стоком, который может использоваться для идентификации активности контроллера PER (Program/Erase/Read ). Поскольку выход сделан с открытым стоком, существует возможность подключать несколько таких выходов от разных микросхем памяти вместе через один «подтягивающий» резистор к положительному выводу источника питания.

Рис.26.16. Организация массива памяти NАND -структуры

Массив памяти NAND -структуры организован в виде блоков, каждый из которых содержит 32 страницы. Массив раздел на две области: главную и запасную (рис. 26.16).

Главная область массива используется для хранения данных, в то время как запасная область обычно задействована для хранения кодов коррекции ошибок (ECC ), программных флагов и идентификаторов негодных блоков (Bad Block ) основной области. В 8-битных устройствах страницы в главной области разделены на две полустраницы по 256 байт каждая, плюс 16 байт запасной области. В 16-ти битных устройствах страницы разделены на главную область объемом 256 слов и запасную объемом 8 слов.

Память на основе ячеек NOR имеет сравнительно большие времена стирания и записи, но обладает доступом к каждому биту на чтение. Данное обстоятельство позволяет применять такие микросхемы для записи и хранения программного кода, который не требует частого перезаписывания. Такими применениями могут быть, например, BIOS для встраиваемых компьютеров или ПО для телевизионных приставок.

Свойства NAND-Flash определили область ее применения: карты памяти и иные устройства хранения данных. Сейчас данный тип памяти применяется почти повсеместно в мобильных устройствах, фото- и видеокамерах и т.д. NAND-Flash лежит в основе практически всех типов карт памяти: SmartMedia , MMC , SecureDigital, MemoryStick

Достигнутая в настоящее время информационная емкость Flash -памяти достигает 8ГБит, типовая совокупная скорость программирования и стирания составляет до 33.6 мС / 64 кБ при тактовой частоте до 70 МГц.

Двумя основными направлениями эффективного использования Flash -памяти являются хранение редко изменяемых данных и замена памяти на магнитных дисках. Для первого направления используется Flash -память с адресным доступом, а для второго – файловая память.

26.6. ОЗУ типа FRAM

FRAM – оперативное энергонезависимое ЗУ, сочетающее высокое быстродействие и малую потребляемую мощность, присущие ОЗУ, со свойством хранения данных при отсутствии приложенного напряжения.

В сравнении с EEPROM и Flash -памятью время записи данных в ЗУ этого типа и потребляемая мощность намного меньше (менее 70 нс против нескольких миллисекунд), а ресурс по циклам записи намного выше (не менее 10 11 против 10 5 …10 6 циклов для EEPROM ).

FRAM должна стать в ближайшем будущем самой популярной памятью в цифровых устройствах. FRAM будет отличаться не только быстродействием на уровне DRAM , но и возможностью сохранять данные при отключении энергии. Словом, FRAM может вытеснить не только медленную Flash , но и обычную ОЗУ типа DRAM . Сегодня ферроэлектрическая память находит ограниченное применение, к примеру, в RFID -тэгах. Ведущие компании, в числе которых Ramtron, Samsung, NEC, Toshiba , активно развивают FRAM . Примерно к 2015 году на рынок должны поступить n -гигабайтные модули FRAM .

Указанные свойства FRAM обеспечивает сегнетоэлектрик (перовскит), используемый в качестве диэлектрика накопительного конденсатора ячейки памяти. При этом сегнетоэлектрическое ЗУ хранит данные не только в виде заряда конденсатора (как в традиционных ОЗУ), но и виде электрической поляризации кристаллической структуры сегнетоэлектрика. Сегнетоэлектрический кристалл имеет два состояния, которые могут соответствовать логическим 0 и 1.

Термин FRAM еще не устоялся. Первые FRAM получили название – ферродинамические ОЗУ. Однако в настоящее время в качестве запоминающих ячеек используется сегнетоэлектрик и сейчас FRAM часто называют сегнетоэлектрическим ОЗУ.

Первые FRAM имели 2Т /2С -архитектуру (рис.26.17, а), на основе которой выполняется и большинство современных микросхем сегнетоэлектрической памяти. Ячейка такого типа, в которой каждому биту соответствует индивидуальный опорный бит, позволяет определить разницу зарядов с высокой точностью. А благодаря считыванию дифференциального сигнала исключается влияние разброса параметров конденсаторов ячеек. Позже появились FRAM с архитектурой 1Т /1С (рис.26.17, б). Достоинство микросхем с такой архитектурой – меньшая, чем в обычных схемах площадь ячейки и, следовательно, меньшая стоимость микросхемы в пересчете на единицу информационной емкости.

На рис.26.18 приведена структурная схема сегнетоэлектрического ОЗУ (FRAM ) объемом 1 Мбит и параллельным интерфейсом доступа FM 20L 08 фирмы Ramtron . В таблице 26.1. показаны выводы микросхемы.

FM 20L 08 – энергонезависимая память с организацией 128К×8, которая считывается и записывается подобно стандартному статическому ОЗУ. Сохранность данных обеспечивается в течение 10 лет, при этом, нет необходимости задумываться о надежности хранения данных (неограниченная износостойкость), упрощается проектирование системы и исключается ряд недостатков альтернативного решения энергонезависимой памяти на основе статического ОЗУ с резервным батарейным питанием. Быстрота записи и неограниченное количество циклов перезаписи делают FRAM лидером по отношению к другим типам энергонезависимой памяти.

Рис.26.17. Ячейка памяти типа 2Т /2С (а) и 1Т /1С (б)

Рис.26.18. Структурная схема FRAM FM 20L 08

Понравилась статья? Поделитесь ей