Контакты

Трехосевой датчик гироскоп как работает. Что такое гироскоп в телефоне и для чего он нужен? Как узнать, есть ли гироскоп в смартфоне

Новейшие смартфоны оснащены многочисленными датчиками. Одним из самых полезных модулей выступает гироскоп. Для чего такое устройство внедряют в системы сотовых телефонов? Гироскоп в смартфоне - что это? Какие функции на него возложены? Обо всем этом пойдет речь в нашей публикации.

Краткий экскурс в историю

Гироскоп - изобретение французского ученого Леона Фуко. Прототип, согласно принципу работы которого функционируют современные устройства, использовался физиком в целях отслеживания особенностей суточного вращения планеты.

Инновационные гироскопы используются не только для отслеживания специфики колебания различных тел. В наши дни основным назначением прибора является определение углов отклонения предметов по отношению к плоскостям. Для чего нужен гироскоп в смартфоне? Комбинирование такого модуля с акселерометром открывает возможность для отслеживания движений телефона в трехмерном пространстве.

Впервые средство сотовой связи с таким модулем на борту представила компания Apple. Случилось это в ходе презентации модели смартфона iPhone 4. Впоследствии инновационному решению стали подражать самые различные разработчики телефонов.

Гироскоп в смартфоне - что это?

Гироскоп в сотовом телефоне не имеет ничего общего с традиционным механическим устройством. Здесь модуль представляет собой микроскопическую электронную плату, которая способна вычислять угловые скорости, передавая соответствующую информацию в виде электрических сигналов. Как правило, габариты такого чипа составляют всего лишь несколько миллиметров. Если отвечать в общих чертах на вопрос: "Гироскоп в смартфоне - что это?", то несведущему человеку может показаться, что никакой особой пользы владельцу эта фишка не несет - применение устройства направлено всего лишь на определение отклонения мобильного гаджета от собственной оси. Но так ли это?

Отличие гироскопа от акселерометра

Гироскоп в смартфоне - что это? Такой модуль способен передавать данные тем или иным приложениям об угле наклона мобильного гаджета по отношению к земной поверхности. Подобная функция закреплена также за акселерометром. Однако указанные девайсы имеют различный принцип работы. Ведь функционирование акселерометра основано на вычислении собственного ускорения в пространстве. На практике отмеченные возможности обеих систем оказываются взаимозаменяемыми. Именно по этой причине современные смартфоны оснащаются как гироскопом, так и акселерометром.

Функции гироскопа

Зачем нужен гироскоп в смартфоне? Применение датчика открывает следующие возможности. В первую очередь благодаря элементарному встряхиванию мобильного телефона пользователь способен быстро ответить на входящий звонок. Гироскоп позволяет просматривать изображения, переключать аудиозаписи в плеере, облегчает переворачивание страниц во время просмотра текстовых документов.

Еще зачем гироскоп в смартфоне? Чрезвычайно удобным модуль становится при использовании калькулятора. Благодаря отклонению гаджета в ту или иную сторону можно выбирать функции умножения, деления, вычитать и слагать значения.

Разработчики мобильных устройств нашли применение гироскопу также при работе с различными приложениями и программным обеспечением. При встряхивании некоторых устройств автоматически происходит обновление Bluetooth. Очень удобным наличие модуля становится при необходимости измерения уровней и углов наклона.

Гироскоп незаменим в случае работы с электронными картами. Модуль дает возможность определять точное положение пользователя на определенной местности. При запуске навигатора карта будет менять положение вслед за поворотом человека. Если пользователь развернется лицом к тому или иному объекту, это сразу же отобразится на визуальной схеме. Такая функция будет крайне полезной для людей, которые увлекаются активным отдыхом, в частности путешествиями и ориентированием на местности.

Без гироскопа не могут обойтись любители мобильных игр. Функциональный модуль способствует созданию более реалистичной картинки и облегчает управление. Особенно правдоподобными благодаря гироскопу становятся всевозможные симуляторы, шутеры, трехмерные бродилки. Чтобы езда на виртуальной машине либо полет на самолете казались более реальными, достаточно изменения положения смартфона в одной из плоскостей.

Если пользователь мобильного телефона в дальнейшем планирует использовать шлем виртуальной реальности, в таком случае наличие гороскопа выступает обязательным условием. Без датчика станет невозможным отслеживание системой смартфона поворотов головы, перемещения человека в пространстве.

Недостатки

Но наличие в смартфоне гироскопа может обернуться минусом, да таким, что отдельные пользователи стараются сразу же отключить функциональный модуль. Речь идет о реакции некоторых приложений на изменения положения сотового телефона в пространстве со значительным запозданием.

Сравнительным недостатком наличия гироскопа в смартфоне выступают неудобства, которые способны возникать при чтении электронной книги. Если пользователь произвольно меняет позу, датчик тут же преобразит ориентацию странички в соответствующей плоскости. Подобные моменты обычно вызывают раздражение.

Как определить, есть ли гироскоп в смартфоне

Узнать о присутствии функционального модуля в системе мобильного устройства можно несколькими способами. Наиболее простой и доступный вариант - ознакомление с описанием модели смартфона на официальном сайте изготовителя либо просмотр прилагающейся к гаджету технической документации.

Существуют и другие решения. Например, можно прибегнуть к установке на телефон специальных приложений. Одним из таковых выступает AnTuTu Benchmark. После инсталляции и запуска приложения достаточно перейти на вкладку «Информация». Через несколько мгновений на экране отобразятся все спецификации смартфона.

В качестве альтернативы вышеуказанному варианту можно воспользоваться утилитой Sensor Sense. Приложение фиксирует данные, которые исходят со всех датчиков, встроенных в мобильное устройство. Если в списке «запеленгованных» модулей не окажется гироскопа, это будет свидетельствовать о его отсутствии.

После выхода iPhone 4 многие много внимания было уделено новому дисплею, корпусу и прочим важным вещам. И лишь мимоходом отметили замену акселерометров на гироскопы для улучшения управления в играх. В своей статье для «Компьютерного обозрения» я отметил этот момент, в следствие чего даже консультировал одного из читателей. Почему бы не уделить этому моменту внимание и не разобраться зачем одни датчики были заменены на другие и чем они собственно отличаются?

В Сеть просочилась неофициальная информация о характеристиках портативной консоли PSP2, презентация которой пройдет завтра, 27 января. PSP2 будет немного компактнее предшественницы – ее размеры составят 17х7,4х2,3 см. Как и предполагалось, на задней части консоли разместят сенсорную панель. Кроме того для управления в играх можно будет использовать четыре кнопки, два переключателя, а также два аналоговых стика. OLED-дисплей с диагональю 5 дюймов и разрешением 960х544 точек будет сенсорным. PSP2 работает на усовершенствованной версии четырехъядерного процессора ARM Cortex A-9.

Начнем с того, что и акселерометры и гироскопы являются инерционными датчиками. Акселерометры (лат. accelero - ускоряю и μετρέω - измеряю) - приборы, предназначенные для имерения проекции кажущегося ускорения.

Простейшая модель акселлерометра

В данном случае русская Википедия дает на удивление неплохое определение. В случае с мобильными телефонами датчики реагировали на изменение вектора ускорения свободного падения и все последующие действия исходили из этого.

Условная схема определения положения устройства в пространстве с применением двух акселлерометров

Точность в результате была довольно низкой, так как угол поворота устройства в пространстве напрямую измерить таким образом невозможно, лишь примерно оценить. На практике это выражалось в задумчивости поворота экранов, ложных срабатываниях и т.д. Какие же преимущества дает гироскоп и чем он собственно отличается?

Определение на Вики настолько далеко от общего, что обратимся к первоисточнику.

Впервые определение гироскопу дал Леон Фуко, назвавший так свой прибор, с помощью которого он наблюдал суточное вращение Земли. В Большой Советской Энциклопедии приводится следующее «Гироскоп - быстро вращающееся твердое тело, ось которого может изменять свое направление в пространстве». В современных гироскопах могут происходить разнообразные физические процессы, не обязательно основанные на вращении твердого тела. Хотя и классические гироскопы все еще применяются.

Примеры гироскопов. Банальный волчок по своей природе является гироскопом.

Примером классического гироскопа является ротор в кардановом подвесе. При вращении ротора он будет сохранять неизменным свое положение в пространстве независимо от движения основания. Таким образом можно измерять угол поворота основания, а соответственно и корабля/самолета etc. Именно по гирокомпасам ходят суда и летают самолеты, не полагаясь на примерные показания магнитного компаса, особенно в полярных широтах, а данные о положении самолета в пространстве получаются с гировертикали и гирогоризонта.

Естественно, классический гироскоп не может применяться в электронике. Для этого используются вибрационные микромеханические гироскопы - датчики угловой скорости. Чувствительный элемент таких приборов закреплен, при попытке его поворота возникает кориолисова сила, пропорциональная угловой скорости. Не вдаваясь в подробности работы, которые вряд ли будут кому-то интересны скажем, что выходным сигналом ДУС является напряжение, пропорциональное угловой скорости. Такие датчики имеют небольшие габариты (около 10x10x2 мм) и могут быть легко интегрированы в печатную плату.

Мировым лидером в производстве таких датчиков является компания Analog Devices, датчик которой изображен на рисунке. Можно с большой долей вероятности утверждать, что именно датчики этой компании установлены в iPhone 4.

Преимущества очевидны. В любой момент времени можно знать положение телефона в пространстве. В играх для управления можно использовать не только поворот устройства, но и скорость поворота, что позволяет организовать более точное и реалистичное управление.

Надеюсь, этот небольшой экскурс в теорию и практику гироскопов вас не утомил, а лишь еще раз подчеркнул, что современный мобильный телефон крайне сложное устройство, в котором применяются технологии ранее доступные только авиационной и космической промышленности. А мы тем временем не брезгуем ими открывать пивные бутылки.

Изображения датчиков взяты с сайта представительства Analog Devices в СНГ и странах Балтии

— Поделится Новостью в Соц. Сетях

В Сеть просочилась неофициальная информация о характеристиках портативной консоли PSP2, презентация которой пройдет завтра, 27 января. PSP2 будет немного компактнее предшественницы – ее размеры составят 17х7,4х2,3 см. Как и предполагалось, на задней части консоли разместят сенсорную панель. Кроме того для управления в играх можно будет использовать четыре кнопки, два переключателя, а также два аналоговых стика. OLED-дисплей с диагональю 5 дюймов и разрешением 960х544 точек будет сенсорным. PSP2 работает на усовершенствованной версии четырехъядерного процессора ARM Cortex A-9.

LG создала планшет с 3D-дисплеем и 3D-камерой

В ассортименте LG уже есть планшет H1000B, но это далеко не массовое и довольно дорогое устройство на базе Windows 7. Также в прошлом году ходили слухи и об Android-планшете LG, которые теперь подтвердились официально. Более того, в нем есть ряд уникальных особенностей, выделяющих его даже среди массы анонсированных на CES 2011 устройств такого рода.Аппарат сменил название с Optimus Pad на G-Slate, но, возможно, это коммерческое имя для планшета, распространяемого T-Mobile. Именно этот оператор сотовой связи анонсировал устройство совместно с LG. Работает оно под управлением Android 3.0 и осна

Acer анонсировала металлический Android-смартфон с 4,8-дюймовым ЖК-дисплеем

Компания Acer относительно недавно вышла на рынок Android-смартфонов, но в ее ассортименте уже есть несколько интересных предложений, включая Liquid E Ferrari и Liquid Metal. Несмотря на оригинальные находки в дизайне они не слишком выделяются среди массы аналогичных продуктов, чего нельзя сказать о новом пока безымянном устройстве, анонсированном Acer на специальном мероприятии в Нью-Йорке. В первую очередь оно привлекает огромным 4,8-дюймовым ЖК-дисплеем и металлическим корпусом.

Создано приложение для смартфонов, следящее за действиями пользователя

На конференции Embedded Networked Sensor Systems в Цюрихе, Швейцария, Хонг Лю (Hong Lu) из Дартмутского колледжа (Dartmouth College, Ганновер, США) продемонстрировал необычное приложение для смартфонов, названное Jigsaw. Оно было разработано в сотрудничестве с Исследовательским центром Nokia в Пало-Альто, США (Nokia Research Center, NRC). Приложение способно определять, чем пользователь занимается в текущий момент времени, используя для этого показатели различных датчиков, встроенных в смартфон. В частности, задействуются микрофон, акселерометр и GPS-передатчик.

Acer beTouch E210 - Android "звонилка" с клавиатурой

Компания Acer на CES 2011 представила коммуникатор beTouch E210, у которого есть физическая QWERTY клавиатура, дополняющая 2.6-дюймовый сенсорный дисплей. Коммуникатор работает под управлением Android 2.2 Froyo, поддерживает HSDPA/HSUPA (900/2100МГц или 850/1900МГц) и оснащен аккумулятором емкостью 1300мАч, процессором ST Ericsson PNX6715 с тактовой частотой 416МГц, 512Мб ROM, 256Мб RAM, камерой с разрешением 3.2Мп, адаптерами WiFi и Bluetooth, GPS-приемником, слотом расширения micro-SD, портом micro-USB и 3.5мм аудиовыходом. Так же в коммуникаторе имеются FM радио, акселерометр и компас.

После выхода iPhone 4 многие много внимания было уделено новому дисплею, корпусу и прочим важным вещам. И лишь мимоходом отметили замену акселерометров на гироскопы для улучшения управления в играх. В своей статье для «Компьютерного обозрения» я отметил этот момент, в следствие чего даже консультировал одного из читателей. Почему бы не уделить этому моменту внимание и не разобраться зачем одни датчики были заменены на другие и чем они собственно отличаются?

Начнем с того, что и акселерометры и гироскопы являются инерционными датчиками. Акселерометры (лат. accelero — ускоряю и μετρέω — измеряю) — приборы, предназначенные для имерения проекции кажущегося ускорения.

Простейшая модель акселлерометра

В данном случае русская Википедия дает на удивление неплохое определение . В случае с мобильными телефонами датчики реагировали на изменение вектора ускорения свободного падения и все последующие действия исходили из этого.

Условная схема определения положения устройства в пространстве с применением двух акселлерометров

Точность в результате была довольно низкой, так как угол поворота устройства в пространстве напрямую измерить таким образом невозможно, лишь примерно оценить. На практике это выражалось в задумчивости поворота экранов, ложных срабатываниях и т.д. Какие же преимущества дает гироскоп и чем он собственно отличается?

Определение на Вики настолько далеко от общего, что обратимся к первоисточнику.

Впервые определение гироскопу дал Леон Фуко, назвавший так свой прибор, с помощью которого он наблюдал суточное вращение Земли. В Большой Советской Энциклопедии приводится следующее «Гироскоп — быстро вращающееся твердое тело, ось которого может изменять свое направление в пространстве». В современных гироскопах могут происходить разнообразные физические процессы, не обязательно основанные на вращении твердого тела. Хотя и классические гироскопы все еще применяются.

Примеры гироскопов. Банальный волчок по своей природе является гироскопом.

Примером классического гироскопа является ротор в кардановом подвесе. При вращении ротора он будет сохранять неизменным свое положение в пространстве независимо от движения основания. Таким образом можно измерять угол поворота основания, а соответственно и корабля/самолета etc. Именно по гирокомпасам ходят суда и летают самолеты, не полагаясь на примерные показания магнитного компаса, особенно в полярных широтах, а данные о положении самолета в пространстве получаются с гировертикали и гирогоризонта.

Естественно, классический гироскоп не может применяться в электронике. Для этого используются вибрационные микромеханические гироскопы — датчики угловой скорости. Чувствительный элемент таких приборов закреплен, при попытке его поворота возникает кориолисова сила, пропорциональная угловой скорости. Не вдаваясь в подробности работы, которые вряд ли будут кому-то интересны скажем, что выходным сигналом ДУС является напряжение, пропорциональное угловой скорости. Такие датчики имеют небольшие габариты (около 10x10x2 мм) и могут быть легко интегрированы в печатную плату.

Мировым лидером в производстве таких датчиков является компания Analog Devices , датчик которой изображен на рисунке. Можно с большой долей вероятности утверждать, что именно датчики этой компании установлены в iPhone 4.

Преимущества очевидны. В любой момент времени можно знать положение телефона в пространстве. В играх для управления можно использовать не только поворот устройства, но и скорость поворота, что позволяет организовать более точное и реалистичное управление.

Надеюсь, этот небольшой экскурс в теорию и практику гироскопов вас не утомил, а лишь еще раз подчеркнул, что современный мобильный телефон крайне сложное устройство, в котором применяются технологии ранее доступные только авиационной и космической промышленности. А мы тем временем не брезгуем ими открывать пивные бутылки.

Изображения датчиков взяты с сайта представительства Analog Devices в СНГ и странах Балтии

Сейчас все смартфоны оснащены как минимум одним датчиком, а чаще всего несколькими. Самыми распространенными стали датчики приближения, освещения и движения. Большинство смартфонов оснащены акселерометром, реагирующим на перемещение устройства в двух или максимум в трех плоскостях. Для полноценного взаимодействия с гарнитурой виртуальной реальности нужен гироскоп, который определяет движения в любом направлении.

Гироскоп в смартфоне – это микроэлектромеханический преобразователь угловых скоростей в электрический сигнал. Другими словами этот датчик рассчитывает изменение угла наклона относительно оси при повороте устройства.

Гироскоп относится к микроэлектромеханическим системам (МЭМС), которые совмещают в себе механическую и электронную часть. Подобные чипы имеют размеры порядка пары миллиметров или меньше.

Обычный гироскоп состоит из инерционного предмета, который быстро вращается вокруг своей оси. Тем самым он сохраняет свое направление, а смещение контролируемого объекта измеряется по изменению положения подвесов. В смартфоны такой волчок явно не поместиться, вместо него используется МЭМС.

Преобразование механического движения в электрический сигнал

В самом простом одноосевом гироскопе есть две подвижные массы, двигающиеся в противоположных направлениях (на картинке изображены синим цветом). Как только прикладывается внешняя угловая скорость, на массу действует сила Кориолиса, которая направлена перпендикулярно их движению (отмечена оранжевым цветом).

Под действием силы Кориолиса происходит смещение масс на величину пропорциональную прикладываемой скорости. Изменение положения масс меняет расстояние между подвижными электродами (роторами) и неподвижными (статорами), что приводит к изменению емкости конденсатора и соответственно напряжения на его обкладках, а это уже электрический сигнал. Вот такие множественные сигналы и распознаются гироскопом MEMS, определяя направление и скорость движения.

Вычисление ориентации смартфона

Микроконтроллер получает сведения о напряжении и преобразует их в угловую скорость в данный момент. Величину угловой скорости можно определять с заданной точностью, например до 0,001 градусов в секунду. Чтобы определить насколько градусов вокруг оси повернули устройство, необходимо мгновенную скорость умножить на время между двумя показаниями датчика. Если использовать трехосевой гироскоп, то получим данные о поворотах относительно всех трех осей, то есть таким образом определить ориентацию смартфона в пространстве.

Здесь стоит отметить, что для получения значений углов, необходимо интегрировать первоначальные уравнения, в которые входят угловые скорости. При каждом интегрировании увеличивается погрешность. Если вычислять положение только при помощи гироскопа, то со временем рассчитываемые значения станут некорректными.

Поэтому в смартфонах для точного определения ориентации в пространстве необходимы данные еще и акселерометра. Этот датчик измеряет линейное ускорение, но не реагирует на повороты. Оба датчика способны полностью описать все виды движения. Основное преимущество гироскопа над акселерометром в том, что он реагирует на движение в любом направлении.

Зачем нужен гироскоп в смартфоне

Повышенное внимание этому датчику оказывается последние пару лет, когда активно начали развиваться игры и приложения виртуальной реальности. Для взаимодействия пользователя с виртуальной реальностью программе необходимо точно определить положение человека в пространстве. Сейчас даже в самых бюджетных смартфонах установлен акселерометр, но его показания сопровождаются шумами, и датчик не реагирует на повороты и движения в горизонтальной плоскости. Следовательно, для полного погружения в виртуальную реальность в смартфоне обязательно должен быть гироскоп и акселерометр.

Как узнать есть ли в смартфоне гироскоп

Обычно в характеристиках смартфона указано, какие в нем есть датчики. Если же вы сомневаетесь в правдивости информации, то помогут специальные программы. Например, Sensor Box for Android показывает информацию о всех встроенных датчиках. Гироскоп в нем обозначен как Gyroscope. Есть и другие способы, которые мы

Прежде чем приступить к рассмотрению модуля гироскопа и акселерометра, думаю, будет не лишним коротко разобраться что это такое. Гироскоп представляет собой устройство, реагирующее на изменение углов ориентации контролируемого тела. В классическом представлении это какой-то инерционный предмет, который быстро вращается на подвесах. Как результат вращающийся предмет всегда будет сохранять свое направление, а по положению подвесов можно определить угол отклонения. На самом же деле электронные гироскопы построены по другой схеме и устроены немного сложнее (вращающийся волчок впихнуть в микросхему было бы не просто). Акселерометр - это устройство, которое измеряет проекцию кажущегося ускорения, то есть разницы между истинным ускорением объекта и гравитационным ускорением. На простом примере такая система представляет собой некоторую массу, закрепленную на подвесе, обладающим упругостью (пружина для хорошего примера). Так вот если такую систему повернуть под каким-то углом, или бросить, или предать линейное ускорение, то упругий подвес отреагирует на движение под действием массы и отклонится и вот по этому отклонению определяется ускорение. Таким образом, гироскоп реагирует на изменение в пространстве независимо от направление движения, с помощью акселерометра же может измерять линейные ускорения предмета, а так же и искусственно рассчитываемое расположение предмета в пространстве. Каждое устройство имеет свои достоинства и недостатки.

Микросхема MPU6050 содержит на борту как акселерометр, так и гироскоп, а помимо этого еще и температурный сенсор. MPU6050 является главным элементом модуля GY-531. Помимо этой микросхемы на плате модуля расположена необходимая обвязка MPU6050, в том числе подтягивающие резисторы интерфейса I 2 C, а также стабилизатор напряжения на 3,3 вольта с малым падением напряжения (при питании уже в 3,3 вольта на выходе стабилизатора будет 3 ровно вольта) с фильтрующими конденсаторами. Ну и бонусом на плате распаян SMD светодиод с ограничивающим резистором как индикатор питающего напряжения. Размер платы модуля GY-521 10 х 20 мм.

Схема модуля представлена ниже (номиналы могут немного отличаться в разных версиях модуля):

Характеристики MPU6050 :

  • напряжения питания 2,375 - 3,46 вольт
  • потребляемый ток до 4 мА
  • интерфейс передачи данных - I2C
  • максимальная скорость I2C - 400 кГц
  • вход для других датчиков I2C
  • внутренний генератор на 8 МГц (вне модуля возможность подключить внешний кварцевый резонатор на 32,768 кГц или 19,2 МГц)

Нужно отметить возможность MPU6050 работать в мастер режиме I2C для AUX выводов, к которым можно подключить еще один внешний датчик (например магнитометр). Честно говоря, я не понимаю для чего это вообще нужно, если проще подключать дополнительные датчики к общей шине I2C микроконтроллера.

Функции MPU6050 :

  • трех осевой MEMS гироскоп с 16 битным АЦП
  • трех осевой MEMS акселерометр с 16 битным АЦП
  • Digital Motion Processor (DMP)
  • slave I 2 C для подключения к микроконтроллеру
  • master I 2 C для подключения к микросхеме дополнительного датчика
  • регистры данных датчиков
  • прерывания
  • температурный сенсор
  • самопроверка гироскопа и акселерометра
  • регистр идентификации устройства

Внешний вид модуля GY-521:

В комплекте идут штыревые соединения угловые и прямые. Припаян был прямой штыревой разъем.

Данные измерений датчиков можно считывать как из регистров хранения, так и пользоваться функциями FIFO. Имеется отдельный регистр под названием Who am I, значение, записанное в этом регистре постоянно и его можно только считать, можно использовать как идентификатор устройства, значение в регистре 104 или 0х68. Отдельным выводом является выход прерываний, который настраивается регистрами настройки под определенные события.

Датчики гироскопа и акселерометра изготовлены как MEMS (микроэлектромеханическая система) - внешнее воздействие на датчик сначала изменяет состояние механической части, затем изменение состояния механической части приводит к изменению сигнала электрической части. Одним словом в одном корпусе собрана не только электроника, но и механика. В микросхеме MPU6050 содержится сразу два MEMS датчика, производитель утверждает, что их взаимное воздействие друг на друга сведено к минимуму. Ну что же, совсем не плохо за цену готового модуля порядка 2 уе. Между прочим эти модули можно приобрести на торговых площадках aliexpress или ebay.

Разберемся как можно использовать датчики акселерометра и гироскопа. Температурный датчик трогать даже не будем - данные о температуре прочитали, перевели в человеческие значения и наслаждаемся. Гироскоп выдает значения мгновенной угловой скорости с разрешением, заданным в настройках, например 2000 градусов в секунду. Если прошить микроконтроллер и смотреть на получаемые данные, то увидим только нули. Если начать крутить датчик, то получим мгновенные значения угловой скорости. Заметьте, что скорость мы получаем в градусах в секунду, а это значит, что линейные скорости не влияют на эти показания - показания будут изменяться только при повороте датчика в пространстве. Далее с помощью этих данных можно получить ориентацию объекта в пространстве. Для этого нужно получить мгновенное значение угловой скорости и умножить его на промежуток времени между опросами датчика гироскопа. Пример разрешение 2000 градусов в секунду, промежуток между опросами датчика 0,1 секунда, значение мгновенной скорости 300, значит 300*0,1=30 - за это время ось гироскопа была повернута на 30 градусов. Далее каждое полученное значение нужно сложить с предыдущим. Если ось двигалась в одном направлении - значение 30 градусов, если в другом, то -30, таким образом, при возвращении датчика в исходное положение всегда (в идеале) будет 0, при отклонении от исходного положения, при выполнении вышеописанных действий, получим угол отклонения. Обрабатывая углы трех осей гироскопа можно получить ориентацию объекта в пространстве.

Таким образом, при интегрировании состояния угла положения, также интегрируется и погрешность - при длительном использовании можно получить уже абсолютно неправильные значения. Поэтому часто гироскоп используют в паре с акселерометром, образуя в простом варианте альфа-бета фильтр или комплементарный фильтр.

С акселерометром все проще. Измеряя ускорения трех осей датчика можно получить данные, преобразуя их с помощью геометрии, по которым можно также получить ориентацию объекта в пространстве. Помимо этого акселерометр измеряет линейные ускорения, то есть ориентация объекта может искажаться при движении датчика в линейных направлениях. Также с помощью акселерометра можно определять движение объекта или его столкновение. Например детектировать падение объекта или толчок о преграду, чтобы обходить это.

Данные от акселерометра получаем всегда достаточно точные, то есть нуль всегда остается нулем ни при каких воздействиях (имеется ввиду не зависит ни от времени, ни от характера воздействия), однако недостаток кроется в том, что данные идут шумом в некотором диапазоне данных, то есть до десятых долей градуса точно измерять угол не получится. Зато исходя из экспериментальных данных, точность до целых значений градуса держится вполне стабильно. Не забываем про влияние линейных ускорений.

Если датчик приобрели, можно переходить к рассмотрению внутренностей модуля, а именно главного элемента - микросхемы MPU6050. Информация хранится в регистрах микросхемы, которых более 100 (!). И вот тут то и кроется огромный подводный камень. производитель не утрудился расписать в документации всю информацию, а привел лишь информацию о самом необходимом. На самом деле не известно даже сколько же всего там регистров, доступных для чтения или записи или того и другого. Также информации на некоторые регистры попросту нет, кроме его названия. Ну что же, придется экспериментально определять влияния значений, записанных в некоторые регистры.

В конце статьи вы можете скачать исходный код примера использования данного модуля. Внутри вы найдете информацию о том как считывать данные датчиков модуля, а также инициализацию устройства или просто первоначальную настройку регистров для начала работы с модулем GY-521.

Интерфейс I 2 C работает по стандартной схеме. Адрес микросхемы может быть двух значений (без бита чтения / записи) в зависимости от состояния вывода AD0 - b1101000, если AD0 соединен с землей и b1101001, если AD0 соединен с источником питания. Соответственно плюс бит чтения или записи.

Микросхема содержит Digital Motion Processor (DMP), он необходим для того, чтобы обрабатывать данные, получаемые из датчиков гироскопа и акселерометра. Все это делается для того, чтобы повысить точность получаемых данных, так как при обработке данных на микроконтроллере точность может пострадать из-за снижения скорости их обработки. Как правило, алгоритмы обработки движения должны работать с достаточно высокой частотой, обычно 200 Гц, как утверждает документация.

Что касается регистров, то их достаточно большое количество, необходимая информация находится в карте регистров на MPU6050, документ прилагается к статье. Помимо этого прилагается исходник с настройками этих регистров.

Для демонстрации работы модуля была собрана схема:

Здесь использован микроконтроллер Atmega8, данные выводятся на ЖК дисплей 2004А (4 строки по 20 символов). На экран выводится следующая информация, полученная и преобразованная от микросхемы MPU6050 модуля: 1. значения по трем осям акселерометра, 2. значения по трем осям гироскопа, 3. температура, 4. углы отклонения по данным акселерометра (рассчитаны ресурсами микроконтроллера), 5. поворот по оси Z по данным гироскопа (также путем подсчета микроконтроллером). В первом и втором пункте данные имеют мгновенный характер - то есть именно то, что считывается из регистров хранения, это значит, что для гироскопа это скорость, в состоянии покоя все значения будут равны нулю.

Помимо этого, имеется 6 светодиодов, которые загораются в зависимости от положения датчика по оси Y акселерометра.

Модуль датчиков содержит уже стабилизатор на 3,3 вольта, поэтому его можно подключать как к 5 вольта, так и к 3,3 вольтам. Микроконтроллер запитывается от напряжения 3,3 вольта, чтобы не делать согласование уровней I 2 C.

Собранное устройство на макетной плате:

Для программирования микроконтроллера конфигурация фьюз битов (Atmega8):

Область применения таких датчиков достаточно широка. Данный модуль часто применяют для стабилизации полета квадрокоптера по причине совместного использования гироскопа и акселерометра. Кроме этого модуль можно использовать для координации различных устройств - от просто детектора движения до системы ориентации различных роботов или управления движениями каким-либо устройствами. Область подобных сенсорных устройств достаточно новая и интересная для изучения и применения в любительской технике.

В заключении хотелось бы отметить, что данные модуль - это недорогое и достаточно хорошее решение при необходимости использования гироскопа и / или акселерометра, большое количество настроек датчиков позволит настроить их под любые устройства, малые размеры модуля без труда позволят встраивать его в большинство схем.

К статье прилагается прошивка микроконтроллера, исходный код , документация на MPU6050 и видео работы датчика в схеме.

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
MOD1 Модуль GU-521 1 На базе MPU6050 В блокнот
IC1 МК AVR 8-бит

ATmega8

1 В блокнот
VR1 Линейный регулятор

L7805AB

1 В блокнот
VR2 Линейный регулятор

AMS1117-3.3

1 В блокнот
HG1 LCD-дисплей 2004A 1 В блокнот
C1 470 мкФ 1 В блокнот
C2, C3, C5 Конденсатор 100 нФ 3 В блокнот
C4 Электролитический конденсатор 220 мкФ 1 В блокнот
C6 Электролитический конденсатор 10 мкФ 1
Понравилась статья? Поделитесь ей