Контакты

Децентрализованная сеть. Возможно ли создать децентрализованный интернет из «Кремниевой долины

В связи с тотальной прослушкой интернет-каналов и прозрачностью коммерческих интернет-компаний перед государственными органами сейчас остро встал вопрос о мерах противодействия. Для пользователя самый эффективный вариант - использование криптографических инструментов и децентрализованных сервисов.

AnoNet

AnoNet - децентрализованная сеть между друзьями с использованием VPN и программных BGP-маршрутизаторов.

Bitcoin

Bitcoin - криптовалюта.

BitPhone

BitPhone - мобильное коммуникационное устройство, работающее на базе децентрализованной сети в стиле Bitcoin.

BitMessage

BitMessage - коммуникационный протокол P2P, используемый для обмена зашифрованными сообщениями от одного пользователя ко многим подписчикам.

Commotion Wireless

Commotion Wireless open source коммуникационный инструмент, работающий на мобильных телефонах, компьютерах и других беспроводных устройствах для создания децентрализованных mesh-сетей.

Cryptosphere

Распределенное зашифрованное облачное хранилище на базе модели данных Git.

Drogulus

Drogulus (WIP) - программируемое P2P-хранилище данных с поддержкой криптографии.

Сеть eDonkey (eD2k)

Сеть eDonkey - файлообменная децентрализованная сеть для обмена большими файлами.

Freenet

Freenet - свободное программное обеспечения для анонимного обмена файлами, публикации сайтов (доступны только через Freenet), чатов и форумов.

Freifunk

Freifunk - некоммерческая инициатива по созданию свободной децентрализованной mesh-сети. Прошивки Freifunk основаны на OpenWRT и OLSR или B.A.T.M.A.N.

GNUnet

GNUnet - фреймворк для безопасных peer-to-peer коммуникаций без использования центральных или промежуточных серверов.

Grimwire

Grimwire - браузерное приложение, которое использует Web Workers для изоляции процессов и WebRTC для peer-to-peer коммуникаций.

Guifi

Guifi - европейская (преимущественно, испанская) большая mesh-сеть с более чем 22000 активными узлами WiFi и 25 км оптоволокна.

I2P

I2P - анонимизирующая сеть, использующая несколько уровней шифрования.

Kademlia

Kademlia - распределенная хэш-таблица для P2P-сетей.

NameCoin

NameCoin - распределенная система DNS на технологии Bitcoin.

Nightweb

Nightweb - экспериментальное приложение для Android или ПК, которое позволяет публиковать контент и общаться через BitTorrent поверх I2P.

LibreVPN

LibreVPN - виртуальная mesh-сеть с конфигурационными скриптами, позволяющими поднять собственный mesh-VPN.

OpenNIC

OpenNIC Project - открытый и демократичный альтернативный DNS-провайдер.

Osiris

Osiris - ПО для децентрализованного портала, управляемого и работающего по P2P.

PeerCDN

PeerCDN - автоматически раздает статичные ресурсы на сайте (изображения, видео, файлы) через P2P-сеть, составленную из посетителей, который в данный момент находятся на сайте.

PeerCoin/PPCoin

PeerCoin/PPCoin - первая криптовалюта, основанная на реализации одновременно систем proof-of-stake и proof-of-work.

PeerServer

PeerServer - пиринговая клиент-серверная технология, с использованием WebRTC, где ваш браузер работает как сервер для других браузеров через пиринговые P2P-каналы WebRTC.

Phantom

Phantom - система децентрализованной интернет-анонимности.

Project Byzantium

Project Byzantium - Linux-дистрибутив с поддержкой беспроводных mesh-сетей, который обеспечит связь в случае стихийного бедствия или аварии интернет-провайдера.

Project Meshnet

Project Meshnet ставит целью создание устойчивого децентрализованного альтернативного интернета.

Quick mesh project

Quick mesh project - прошивка на базе OpenWRT для создания mesh-сетей.

Retroshare

Open source, децентрализованная коммуникационная платформа для чатов и обмена файлами.

Serval Project

Serval Project позволяет осуществлять звонки между мобильными телефонами без использования базовых станций.

Syndie

Syndie - open source система для поддержки распределенных форумов.

Tahoe-LAFS

Tahoe-LAFS - свободная распределенная файловая система с дублированием информации.

Unhosted

Unhosted - бессерверные веб-приложения, которые исполняются в браузере клиента.

Vole

Vole - социальная сеть в браузере, без центрального сервера, использует Bittorrent, Go и Ember.js, а также Bittorrent Sync.

ZeroTier One

ZeroTier One - open source приложение для создания огромных распределенных Ethernet-сетей. Используется end-to-end шифрование для всего трафика. Есть коммерческая и бесплатная версия.

Децентрализованная сеть Ricochet Интернет от фонаря
Децентрализованная сеть Ricochet: интернет от фонаря
Беспроводная децентрализованная сеть Ricochet развивалась с 1985 года
и существовала параллельно с привычными нам способами доступа к интернету.

В мире технологий философским спорам (кто первый? курица или яйцо? ) не место.
Всегда есть первопроходец, челленджер, бросающий вызов,
открывающий для остальных новое направление движения.

Сейчас, когда 3G-интернет может настроить любая
среднестатистическая кухарка, а точки доступа Wi-Fi в метрополисах есть
буквально на каждом углу, кажется невероятным, что ещё
пятнадцать лет назад о передаче данных по воздуху для рядового потребителя
и речи не могло быть. В те времена и проводного широкополосного интернета не было.
Старый добрый dial-up, скрежещущие звуки модемных протоколов
и работа в неудобной позе (телефонная розетка в гостиничных
номерах по закону Мёрфи оказывалась в самом дальнем углу комнаты).

Удивительно , но именно в это время увидела свет и, что главное,
получила активное развитие одна из самых интересных технологий беспроводной
передачи данных - предвестница нынешнего беспроводного доступа в Сеть.
У этой технологии есть имя, звучное, как выстрел, - Ricochet .


Прошлое Ricochet

У сети Ricochet есть отец-основатель. Да ещё какой. Пол Бэрен
американский инженер польского происхождения, один из основоположников
компьютерных сетей с коммутацией пакетов. Работая в финансируемой государством
компании RAND Corporation, Бэрен в конце шестидесятых годов приходит к мысли
о необходимости разработки компьютерных сетей, способных в плане
живучести противостоять вполне реальной в то время ядерной угрозе.


Системы передачи данных тогда базировались на архитектуре
телефонных сетей общего назначения и имели централизованную
(центр - телефонная станция) или децентрализованную (много связанных
центров - телефонных станций) структуру. Очевидно, что даже
такой надёжный способ, как пакетная передача данных, не давал стопроцентной
гарантии доставки пакетов в рамках централизованной или децентрализованной инфраструктуры сети.



Пола Бэрена совершенно справедливо называют одним
из отцов-основателей интернета. Но его коньком всегда были ячеистые сети.

Бэрен предложил альтернативную инфраструктуру, которую
он назвал распределённой (distributed ). В распределённой сети каждый
из узлов является потенциальным маршрутизатором, связанным с одним или несколькими
узлами сети. Благодаря таким избыточным связям пакеты в распределённой сети
могут двигаться по множеству динамически формируемых альтернативных маршрутов,
что позволяет сети функционировать даже в условиях
выхода из строя большинства её узлов.

Распределённая сеть , функционирующая
по этим принципам, получила название "ячеистая (mesh) сеть".


Предложенная Бэреном распределённая (distributed)
архитектура сети является одной из классических сетевых архитектур.

Технологию ячеистых сетей Бэрен предложил главному заказчику
компании RAND Corporation - военно-воздушным силам США. Однако из-за
лоббирования со стороны компании AT&T , предоставлявшей свои телекоммуникационные
каналы в аренду военным, проект так и остался проектом. Правда, работами Бэрена
заинтересовались разработчики сети ARPANET. Лэрри Робертс, "главный по интернету"
в лаборатории DARPA , был впечатлён моделью отказоустойчивой сети Бэрена,
описанной в его статье "On Distributed Communications Networks ",
и пригласил его в проект неофициальным консультантом.

Участие Бэрена в создании первых вариантов ARPANET привело
к распространённому заблуждению о том, что интернет имеет сугубо военные
корни, связанные с необходимостью разработки системы передачи данных,
настолько живучей, что она способна легко противостоять ядерной атаке потенциального
противника и функционировать в любых критических условиях. Кстати, тот самый великий
и могучий Skynet , захвативший 19 апреля 2011 года в фильме
"Терминатор" мировое господство , и есть высоконадежная военная mesh-сеть ,
построенная на основе модели Бэрена.

На самом деле, ARPANET был сугубо исследовательским проектом.
Эта сеть связывала исследовательские центры, а не военные объекты.
В ARPANET на первом месте рассматривается эффективность доставки данных
между узлами за приемлемое время. Конечно, работы Бэрена, связанные с отказоустойчивостью
сетей, существенно повлияли на методы маршрутизации в современном интернете.
Именно поэтому Пол Бэрен наряду с Лэрри Робертсом, Леонардом Клейнроком
и Джозефом Ликлайдером считается одним из основоположников интернета.


Короткая вспышка славы:
Развивая свои идеи распределённых сетей пакетной коммутации,
Пол Бэрен в 1985 году становится одним из основателей компании Metricom.
Целью её создания была разработка сети передачи данных, не имеющей чётко
определённого центрального коммутирующего узла. Эта сеть проектировалась в первую
очередь для нужд энергетической отрасли, старавшейся в то время удешевить процесс
управления такими разветвлёнными инфраструктурами, как электрические и газовые сети.

Аренда телефонных каналов у крупных американских провайдеров
влетала в копеечку, поскольку компьютеры, обменивающиеся данными, постоянно
находились на связи, а значит, занимали канал. Именно тогда и пригодились идеи Бэрена
по созданию распределённой сети, узлы которой самостоятельно осуществляют маршрутизацию.
Чтобы полностью отказаться от аренды проводных каналов, такую сеть решили
сделать беспроводной. В качестве протокольной основы в Metricom
выбрали набирающий силу стандарт radio ethernet.

Во время разработки стало ясно , что подобная сеть может стать
конкурентоспособной на рынке провайдерских услуг. К этой же мысли
пришли и инвесторы, в числе которых был один из основателей Microsoft Пол Аллен.
Сейчас Ricochet назвали бы сетью "последней мили ", поскольку её основной
задачей было беспроводное подключение пользователя к интернету или корпоративной сети.

К 1994 году были разработаны и испытаны все необходимые
образцы оборудования, пригодного для потребительских целей, и компания Metricom
официально вышла на рынок услуг ISP с коммерческой сетью Ricochet .
Экспансия Ricochet началась с городка Купертино - того самого, где располагается
штаб-квартира Apple и располагался офис самой Metricom.
Всего за год распределённая сеть Ricochet растянулась по всему северному
побережью Сан-Франциско, а ещё через пару лет она опутала
Нью-Йорк, Лос-Анджелес, Атланту, Миннеаполис, Даллас, Детройт и Майами.



Зоне покрытия сети Ricochet в 1995 году
может позавидовать любой современный оператор услуг связи.

Ключевые компоненты сети Ricochet - беспроводные модемы ,
которые подписчики Ricochet получали вместе с контрактом. Они подключались
к последовательному порту (позже к USB) и работали на частоте 900 МГц, обеспечивая
приём и передачу данных со скоростью 28,8 килобит в секунду
на расстоянии от одной до пяти миль. Связывались они с ближайшим микросотовым
радиомодемом, именуемым Poletop Radio .



Poletop Radio - микросотовые модемы, обеспечивающие взаимодействие
с множеством модемов пользователей и множеством себе подобных устройств.
Они обеспечивают интеллектуальную маршрутизацию пакетов в сети Ricochet, формируя
несколько альтернативных маршрутов передачи. Передав пакет,
эти узлы формировали сигнал ACK (acnowledgment ), отправлявшийся на предыдущий
в маршруте узел. Этот сигнал подтверждал успешную передачу пакета.
Таким образом каждый пакет рикошетом отправлял назад подтверждение о своей доставке.
Отсюда и название всей сети. Ну а название Poletop эти узлы получили потому,
что чаще всего они крепились на фонарных столбах (Streetlight Pole )
- самом удобном месте, коих в любом городе великое множество.
Именно поэтому сеть Ricochet чаще всего разрасталась вдоль улиц.


Все модемы Poletop в радиусе десяти-двадцати миль связывались
с проводной точкой доступа - специальным сервером, обычно располагаемым
в одном из муниципальных зданий. Этот сервер обеспечивал высокоскоростное
проводное соединение с ближайшим региональным интерфейсом доступа к IP-сетям.
Работая на частоте 2,4 ГГц, Wired Access Point (WAP) обеспечивали высокую
(до 128 килобит в секунду) скорость обмена данными с множеством Poletop .
Чуть позже на этой же частоте стали работать и модемы пользователей.




Чаще всего региональный коммуникационный
сервер сети Ricochet располагался в муниципальных зданиях (City Hall ).
Множество региональных интерфейсов доступа к IP-сетям
(NIF - Network Interface Facility) имели арендованные каналы связи к:
провайдерам интернета, являющимся партнёрами Metricom; корпоративным
сетям подписчиков Ricochet ; центру управления (NOC - Network Оperations Center )
самой распределённой сетью. Последняя не только контролировала
состояние всех остальных компонентов сети, но и содержала сервер имён Ricochet ,
обеспечивающий авторизацию подключаемых к сети пользователей.

Работа в Ricochet не была похожа ни на одну из технологий
доступа к интернету, имеющихся в то время. Фактически пользователь,
включив ноутбук и беспроводной Ricochet-модем (он имел автономное питание),
мог получить доступ в сеть в любом месте города. Его модем связывался в ближайшим Poletop,
который, связываясь с соседними Poletop, формировал динамические
маршруты движения пакетов к ближайшему WAP. Дальше пакеты Ricochet
конвертировались в IP-пакеты и двигались по арендованным проводным сетям.

В конце девяностых сеть Ricochet имела более сорока тысяч подписчиков,
несмотря на высокую стоимость модемов (триста долларов США), платную (тридцать долларов)
регистрацию и немаленькую (семьдесят пять долларов) ежемесячную абонентскую плату.

Все эти издержки с лихвой компенсировались возможностью получить
доступ к сети где угодно - как в пределах родного города, так и в командировках
в другие крупные города. Впрочем, движение Ricochet охватывало не только мегаполисы.
Масса городков одноэтажной Америки имела возможность создать небольшую Ricochet-структуру.



Движение пакетов пользовательских данных
в сети Ricochet происходило в буквальном смысле слова от столба к столбу.

В 1997 году Пол Аллен становится владельцем контрольного
пакета акций компании Metricom. Аналитики прогнозируют блестящее
будущее перспективной и, главное, реально работающей технологии.
Однако в 2001 году, имея в подписчиках более пятидесяти
тысяч человек, компания Metricom объявляет себя банкротом.

Причина банкротства? Всё дело в неверной маркетинговой политике,
выбранной руководством Metricom . Развитие Ricochet не могло не сказаться
на положении традиционных интернет-провайдеров, которые быстро скорректировали
свои тарифы, сделав их по-настоящему народными. Более того, уяснив перспективность
беспроводного доступа, большинство из них стали активно внедрять Wi-Fi .
Не дремали и операторы сотовой связи, получившие в лице Ricochet пример организации
беспроводной сети обмена данными на имеющейся инфраструктуре (фонарные столбы, муниципальные помещения).

В Metricom не почувствовали беды и даже не подумали сделать
оборудование и тарифы дешевле. Увы, в компании увлеклись надуванием
мыльного пузыря - беды всех доткомов. Средства вкладывались в "перспективные"
исследования по увеличению пропускной способности сети, подписчикам и акционерам
рапортовали о взятии новых скоростных рубежей и выпуске новых модемов.
Забывала Metricom сообщать только о том, что последние пару лет перед банкротством
она работала в долг, и долг этот рос с каждым днём.

Десять лет назад пузырь лопнул. Какое-то время сеть продолжала
функционировать, теряя подписчиков. Несколько лет её активы перекупали
различные компании и организации, питающие надежды возродить былое величие
Metricom хотя бы в пределах нескольких отдельно взятых городов. В 2004 году компания
Terabeam попыталась повторно развернуть сеть в крупных городах. Попытка увязла
в бюрократической переписке с муниципалитетами и бесконечных
переговорах с региональными провайдерами. Всё это происходило на фоне
набирающего популярность доступа по GPRS и активного развития публичных точек Wi-Fi .


28 марта 2008 года сеть Ricochet официально прекратила своё существование.


Будущее Ricochet

Хорошие идеи не канут в бездну. А сеть Ricochet в своей основе
имела отличную идею. Да, сейчас рядовой потребитель интернета получает
доступ к Сети не с помощью модема Ricochet , интегрированного в его смартфон,
а чаще всего благодаря технологии 3G и Wi-Fi . Такому успеху
эти технологии не в последнюю очередь обязаны "смерти" сети Ricochet.
Впрочем, почему смерти? Ricochet , как и известный политический деятель,
жил, жив и, думается, будет ещё долго жить.

Судите сами. На базе наработок Ricochet успешно функционирует
масса сервисных сетей передачи данных. Например,
систем противопожарной охраны и контроля доступа к охраняемым объектам.


В случае необходимости развёртывания сетевой инфраструктуры
в местах, не оборудованных традиционными точками доступа в Сеть
(например, в ходе спасательных работ в труднодоступных местах или при
техногенных катастрофах), идеи сети Ricochet становятся незаменимыми.
Существуют даже проекты развёртывания ricochet-подобных сетей на базе летающих роботов-дронов.



И ещё. В последнее время всё больше разговоров ведётся о том,
что ближайшее будущее беспроводного доступа к Сети - ячеистая инфраструктура,
развёрнутая на множестве пользовательских устройств, которыми любой мегаполис просто наводнён.
Так что, возможно, технология Ricochet ещё "отрикошетит " от прошлого в будущее.

Данное исследование объясняет, каким образом отказ одной автономной системы (AS) влияет на глобальную связность отдельного региона, особенно в том случае, когда речь идет о крупнейшем провайдере интернета (ISP) данной страны. Связность интернета на сетевом уровне обусловлена взаимодействием между автономными системами. По мере увеличения количества альтернативных маршрутов между AS возникает устойчивость к отказам и повышается стабильность интернета в данной стране. Однако некоторые пути становятся более важными, по сравнению с остальными, и наличие как можно большего числа альтернативных маршрутов в итоге является единственным способом обеспечить надежность системы (в смысле AS).

Глобальная связность любой AS, независимо от того, представляет ли она второстепенного поставщика интернета или международного гиганта с миллионами потребителей услуг, зависит от количества и качества его путей к Tier-1 провайдерам. Как правило, Tier-1 подразумевает международную компанию, предлагающую глобальную услугу IP-транзита и подключение к другим Tier-1 операторам. Тем не менее, внутри данного элитного клуба нет обязательства поддерживать такую связь. Только рынок может придать мотивацию таким компаниям безоговорочно соединяться друг с другом, обеспечивая высокое качество обслуживания. Достаточный ли это стимул? Мы ответим на этот вопрос ниже - в секции, посвященной связности IPv6.

Если провайдер интернета теряет связь хотя бы с одним из собственных Tier-1 соединений, он, вероятнее всего, окажется недоступен в некоторых частях Земли.

Измерение надежности интернета

Представьте, что AS испытывает значительную сетевую деградацию. Мы ищем ответ на следующий вопрос: «Какой процент AS в этом регионе может потерять связь с Tier-1 операторами, тем самым утратив глобальную доступность»?

Это противоречит базовым свободам интернета, таким как возможность перейти к любому сайту по его адресу (что вынуждает вас публиковать контент только в Facebook) или возможность индексации содержимого соцсети поисковыми сервисами (а не внутренним поиском Facebook).

Концепция децентрализованной сети подразумевает будущее, в котором такие сервисы, как общение, финансы, публикации, социальные сети, поиск, архивация и т. д., не предоставляются централизованными платформами, которые контролирует та или иная организация, а управляются людьми, то есть сообществом пользователей.

Ключевая идея децентрализации состоит в том, чтобы не доверять управление тем или иным сервисом отдельной всемогущей компании. Вместо этого ответственность за работу сервиса становится коллективным делом: возможно, путем запуска на нескольких интегрированных серверах или в приложениях со стороны клиентов в виде полностью «распределенной» пользовательской модели.

Даже если сообщество будет сложным, а его члены не смогут доверять друг другу, правила этих децентрализованных сервисов продуманы таким образом, чтобы участники поступали справедливо по отношению друг к другу, иначе работа сервиса невозможна. Для того чтобы участники соблюдали правила, будут использоваться приемы криптографии, такие как деревья Меркла и цифровые подписи.

Децентрализованная сеть точно выигрывает у традиционного подхода по трем фундаментальным параметрам: конфиденциальность, переносимость данных и безопасность.

  • Конфиденциальность. При децентрализации уделяется большее внимание неприкосновенности личных данных. Данные распределены по всей сети, а для ограничения доступа к ним применяются технологии оконечного шифрования. Доступ к данным контролируется исключительно алгоритмом сети, в отличие от более централизованных сетей, владелец которых обычно имеет доступ ко всем данным и может влиять на профили клиентов и таргетинг рекламы.
  • Переносимость данных. В децентрализованной системе пользователи остаются владельцами своих данных и могут сами решать, с кем ими делиться. Более того, пользователи сохраняют контроль над данными при переходе от одного провайдера услуг к другому (если в сервисе вообще есть понятие провайдера). Этот момент важен. Если сегодня я решу пересесть с автомобиля производства General Motors на BMW, то мои водительские права останутся при мне. То же самое относится к истории общения в чате и записях о состоянии здоровья.
  • Безопасность. Мы живем в мире, в котором количество угроз нашей безопасности только растет. В централизованной системе чем больше и ценнее информация, тем более она привлекательна для мошенников и преступников. Природа децентрализованных платформ делает их более устойчивыми к взлому, проникновению, краже и другим угрозам, так как они с самого начала созданы для работы под контролем общества.

Точно так же, как само появление интернета в свое время привело к колоссальным изменениям, когда отдельные местные сети были объединены в единую нейтральную сеть, сейчас благодаря технологиям возникает новая общая платформа для сервисов более высокого уровня. И, как было при зарождении эры Web 2.0, первые признаки эры Web 3.0 уже несколько лет дают о себе знать.

Крайне успешной системой контроля версий ПО стала полностью децентрализованная Git , которая практически полностью заменила централизованные системы вроде Subversion. Пример демонстрирует, что валюта легко может существовать без центрального выпускающего органа и успешно соперничает с централизованным PayPal. Децентрализованную альтернативу Facebook планирует предложить сеть Diaspora. Freenet стала первопроходцем в области децентрализованных веб-сайтов, электронной почты и обмена файлами.

Чуть менее известная StatusNet (переименованная в GNU Social) предлагает децентрализованную альтернативу . Сервис XMPP является децентрализованной версией мессенджеров вроде AOL, ICQ, MSN других.

Операторы телефонного узла, 1914 год. Источник: Flickr/raynermedia

Тем не менее эти технологии всегда были где-то на краю – ими пользовались только придумавшие их гики, которые легко могли не замечать недостатков этих сервисов для массовой аудитории. Эта тенденция меняется. Общество наконец-то понимает, что быть полностью зависимым от огромной платформы – не лучший вариант.

Заявить о приходе новой эпохи всерьез призвано целое поколение стартапов, работающих над создание децентрализованных сервисов и уже привлекших внимание индустрии.

Сеть была задумана децентрализованной, чтобы каждый мог владеть собственным доменом и сервером, однако сейчас это не так. Вместо этого сейчас личные данные людей хранятся в огромных массивах вместе с другими. […] В этом случае мы предлагаем вернуться к идее децентрализованной сети.

Вернуть власть людям. Мы считаем, что сможем произвести социальную революцию путем небольших модификаций: мы продолжим использовать сеть, но будем делать это так, что приложения, которые вы используете, будут существовать отдельно от ваших данных.

Становится ясно, что главная задача сейчас – довести эти новые технологии до ума и вывести на массовый рынок. С коммерческой точки зрения децентрализация несет огромные перспективы: в то время как нынешние хранилища данных могут исчезнуть, новые будут всегда оставаться на поверхности новых платформ так, как это было при зарождении интернета.

Пионером в этом плане является : компания стоимостью в $2 млрд, которая является коммерческим сервисом, построенным на базе технологии Git. Его пользователи в любой момент могут извлечь свои данные и покинуть сервис.

Поток информации сегодня огромен, поэтому трудно хранить ее так, чтобы в любой момент можно было легко найти то, что нужно. Для хранения больших массивов информации используют базы данных, которые представляют собой упорядоченный набор информации. Все базы данных можно разделить на три типа:

. В этом случае все данные записываются в единый массив, который хранится на одном компьютере. Чтобы получить информацию, нужно подключиться к главному компьютеру, который называется сервером.

. В этом случае нет единого центрального хранилища. Информацию клиентам предоставляют несколько серверов. Эти серверы соединены друг с другом.


Распределенные . Хранилища данных отсутствуют. Информация содержится на всех узлах. Все клиенты равны и имеют одинаковые права.


Применение баз данных

Хотя базы данных существуют уже давно, при их использовании возникает ряд сложностей.

  • Безопасность. Любой, у кого есть доступ к серверу с информацией, может добавлять, изменять и удалять данные.
  • Надежность. При поступлении нескольких запросов одновременно, сервер может выйти из строя и перестать отвечать.
  • Доступность. Если в центральном хранилище возникают проблемы, вы не сможете получить необходимую информацию, пока эти проблемы не будут решены. Кроме того, хотя у разных пользователей разные потребности, процесс доступа к информации унифицирован и может быть неудобным для клиентов.
  • Скорость передачи данных. Если узлы находятся в разных странах или на разных континентах, подключение к серверу может быть затруднено.
  • Масштабируемость. Централизованные сети трудно наращивать, так как производительность сервера и пропускная способность линий связи ограничены.

Децентрализованные и распределенные базы данных позволяют решить все эти проблемы.

Безопасность децентрализованных баз данных

В таких базах нет централизованного хранилища. Это означает, что все данные распределены между узлами сети. Если на любом из компьютеров что-то добавляется, редактируется или удаляется, это отразится на всех компьютерах сети. Если вносятся санкционированные изменения, новая информация распространяется по сети другим пользователям. В противном случае, данные будут восстановлены из резервной копии, чтобы добиться их совпадения с другими узлами. Таким образом, система является самодостаточной и саморегулирующейся. Такие базы данных защищены от преднамеренных атак или случайного изменения информации.

Надежность, доступность и скорость передачи данных в децентрализованных сетях

Децентрализованные сети способны выдерживать значительную нагрузку.

Данные есть на всех узлах сети. Поэтому поступающие запросы распределяются между узлами. Таким образом, нагрузка ложится не на один компьютер, а на всю сеть. Общая производительность такой сети значительно выше, чем централизованной.

Учитывая, что децентрализованные и распределенные сети состоят из большого числа компьютеров, DDoS-атака окажется успешной, только если ее производительность будет гораздо выше производительности сети. Но организовать такую атаку будет крайне дорого. Поэтому можно считать, что децентрализованные и распределенные сети безопасны.

Пользователи могут располагаться по всему миру, и у каждого могут возникать проблемы с интернетом. В децентрализованных и распределенных сетях клиент имеет возможность выбрать узел, через который сможет работать с необходимой информацией.

Масштабирование различных баз данных

Централизованная сеть не может быть расширена значительно.

Централизованная модель предполагает подключение всех клиентов к серверу. Данные хранятся только на сервере. Поэтому все запросы на получение, изменение, добавление или удаление информации проходят через главный компьютер. Однако ресурсы сервера ограничены. Следовательно, он может эффективно работать только с определенным количеством участников сети. Если количество клиентов будет больше, в пиковые периоды нагрузка на сервер может превышать этот предел. Децентрализованная и распределенная модели позволяют избежать таких проблем, так как нагрузка распределяется между несколькими компьютерами.

Применение децентрализованных и распределенных базы данных

Такие базы данных позволяют ускорить взаимодействие между разными участками производственной цепочки.

Рассмотрим следующий пример. В течение срока службы, автомобиль проходит разные этапы - сборка, продажа, страхование и так далее, вплоть до утилизации. На каждом этапе создается множество различной документации и отчетов. При необходимости получения каких-либо разъяснений, направляются запросы в соответствующие органы. На это уходит много времени. Физическое месторасположение, разные рабочие языки и бюрократия - вот лишь некоторые из сложностей.

Технология блокчейн позволяет избежать всех этих проблем. Вся информация о каждом автомобиле может храниться в сети. Эти данные нельзя удалить или изменить без согласия участника. И к необходимой информации есть доступ в любое время. Эта схема реализуется на практике авторами проекта CarFix. Опираясь на идею умных контрактов, они работают над тем, чтобы весь жизненный путь любого транспортного средства регистрировался в цепочке блоков.

Будьте в курсе всех важных событий United Traders - подписывайтесь на наш

Понравилась статья? Поделитесь ей